铂族金属循环利用技术开发现状及展望

摘要:铂族金属(PGMs)是汽车、石化、能源、国防装备等领域不可或缺的战略性金属资源,但PGMs矿产资源极度匮乏,供需矛盾突出;开展PGMs循环利用是保障PGMs安全供应、支撑关联产业高质量发展的重要举措。本文分析了PGMs的供给和应用情况,明确了当前PGMs市场的供需态势;全面梳理了PGMs湿法回收(含氰化法、盐酸+氧化剂工艺),火法回收(含铅捕集、铜捕集、锍捕集、铁捕集工艺)的技术特征与应用情况;着重从焙烧‒浸出、铁捕集‒酸浸、低温铁捕集‒电解‒离心萃取工艺等方面阐述了PGMs火法‒湿法联合回收技术的研发与应用进展。其中,低温铁捕集‒电解‒离心萃取成套工艺延续了低温铁捕集研究思路,通过低熔点渣型设计将铁捕集温度由1800℃以上降至约1400℃,富集得到Fe-PGMs合金后经电解进一步富集PGMs,再经离心萃取提纯依次得到Pd、Pt、Rh,实现了短流程分离提纯PGMs,具有绿色、高效、低成本的诸多优点。着眼PGMs循环利用产业高质量发展,建议围绕“PGMs富集、分离提纯、污染防控”全流程开展基础研究和技术攻关,加快建设PGMs循环利用全链条标准体系和绿色低碳的产业生态环境,全面开展业务流程的“互联网+”能力建设以实现“回收‒处理‒再利用”全流程的智能化。

电沉积法制备钼涂层的研究进展

  摘 要:钼涂层具有高温强度高、耐腐蚀性好与抗辐照能力强等优异的理化性能,在冶金、航空航天和核工业等领域具有良好的应用前景。本文梳理了钼涂层的主要制备方法,包 括 热 喷 涂、物理气相沉积与电沉积等,比 较 了 不 同 制备方法的优缺点。着

钛双极板表面碳掺杂氮化钛耐腐蚀涂层制备

摘 要:为改善钛双极板在质子交换膜(PEM)水电解槽环境中的耐腐蚀性能和导电性能,采用电泳沉积-热处理两步法在钛基底表面制备碳掺杂氮化钛(C-TiN)复合保护涂层,并在0.5 mol/L 的 H2SO4 和5 mg/L 的 F- 溶液中模拟PEM 水电解槽阳极环境测试其电化学腐蚀性。结果表明,电泳沉积及热处理改善了氮化钛纳米颗粒的连通性,增强了涂层与衬底的粘附力,实现了电子在电活性材料中快速传递。4

高铁含量2∶17型钐钴永磁材料研究进展

摘要:新能源汽车和轨道交通等领域的快速发展对永磁材料的耐温能力和最大磁能积提出了更高要求。基于2∶17型钐钴(SmCo)磁体的高居里温度优势,适当增加铁对钴的替代量,是开发耐高温磁能积磁体的重要途径。然而,当铁的质量分数超过20%时,磁体中结构缺陷大幅增加,退磁曲线方形度和矫顽力急剧恶化,制约了最大磁能积的提升。基于高铁含量 2∶17型 SmCo永磁材料的研究现状及问题,本文从晶内和晶界两个方面概述了磁体中常见的结构缺陷,并总结了结构优化与磁性能提升的新进展,最后对高铁含量 SmCo永磁材料的研究趋势进行了展望。

高阻合金的研究进展、应用及未来趋势

摘要:高电阻合金具有高电阻率、高抗拉强度、低电阻温度系数以及良好耐磨性和抗腐蚀性等一系列性能特点,作为精密电阻合金材料具有广泛而重要的应用。本文主要以Ni-Cr基、Fe-Cr-Al基、Pd基、Au-Pd基高电阻合金为例,阐述了不同工艺处理手段对合金性能的影响,并归纳了现今高阻合金的不足之处,最后对高阻合金的应用和发展趋势进行了简要概述。

铬铁矿无钙焙烧渣中铬的绿色提取

摘要:铬铁矿无钙钠化氧化焙烧—水浸提取是目前铬盐生产的主流工艺,提取剩余的铬渣中仍然存在一定量未反应完全的铬及新生成的含铬矿物。开展从铬渣中深度提取铬的绿色工艺研究,对于资源综合利用具有十分重要的意义。以铬铁矿无钙焙烧铬渣为原料,提出了一种铬渣烧碱焙烧—水浸提铬绿色工艺。研究结果表明:无钙焙烧铬渣通过烧碱焙烧—水浸提铬绿色工艺,不仅降低焙烧反应温度,还可以消除传统焙烧过程中产生的 CO2,实现铬的绿色提取;铬的提取率达到 92%以上,经过焙烧—浸出产生的铬渣中 Cr(Ⅵ)含量降低至 3.85 mg/L;铬的氧化焙烧动力学由内扩散控制,频率因子 A 为 0.39 s-1,反应表观活化能 Ea为 15.22 kJ/mol。该研究结果可为无钙焙烧铬渣的深度绿色提铬及铬渣资源化处理提供新的技术思路。

高纯钼粉的制备技术及研究进展

摘要:随着电子行业的精细化发展,高纯钼因其薄膜应力小、高温稳定性好,导电性能良好,比阻抗低广泛应用于电子行业。本文系统概述了高纯钼粉的制备技术,包括高纯钼原料(钼酸铵、MoO3、MoCl5、Mo(CO)6、MoS3等)清洁化还原分解技术和普通钼粉电子束熔炼及等离子球化提纯技术,重点讨论了沉淀法、溶剂萃取法、离子交换法、结晶法等提高钼酸铵纯度的方法,指出了不同提纯方法存在的优势与不足,并就高纯钼粉制备技术及应用前景进行了总结与讨论。

难熔金属钼和钨的微合金化研究进展

摘要: 微合金化技术作为一种先进的材料设计调控理念,已在钢铁和有色轻金属领域开展了大量研究与应用,具有广阔的发展前景。由于难熔金属钼和钨存在室温脆性、高温易氧化和变形抗力大等问题,限制了其在更极端环境中的应用。 微合金化可在保持纯钼和纯钨基体原有特性的基础上 通过掺杂微量溶质元素对材料的组织和性能进行调控,改善其低温脆性、再结晶温度和力学性能等。根据微合金元素的种类,将其分为非金属元素和金属元素两大类,总结了难熔金属钼、钨的微合金化研究现状。概述了非金属元素Si,C,B对改善基体界面结合和力学性能的作用,及Ti,Zr,Re,Hf,K和Ⅷ族金属元素对钼、钨韧脆转变温度和力学性能的影响,梳理了其他金属元素Mg,Sn,Y和W的微量添加对钼材韧塑性的改善。分析了微合金元素在钼、钨中固溶软化、固溶强化和第二相强化机制, 并对今后难熔金属钼和钨的微合金化研究与发展前景进行展望。

难熔金属表面抗氧化涂层研究进展

摘要:难熔金属由于优异的高温力学性能和可加工性能,被广泛应用于航空、航天以及核工业等领域,但其较差的抗氧化性严重阻碍了难熔金属在高温结构材料中的应用。在难熔金属表面开发涂层被认为是提高其抗氧化性最有效的方法。 本文综述了钼、铌、钽、铼等难熔金属合金抗氧化涂层的常用体系和制备方法,并对难熔金属表面抗氧化涂层未来的发展趋势进行了探讨。

碲的回收和高纯化制备研究进展

摘要:碲属于典型稀散金属,主要来源于铜阳极泥,是我国战略性新兴产业发展不可或缺的关键材料。随着近年来太阳能电池、热电材料、半导体快速发展,对碲的需求急剧增长,碲的回收及高值化利用越来越受到重视。本文对铜阳极泥的处理工艺、碲的分离、富集及高纯化制备进行了综述,为碲的高效回收及高值化制备提供理论指导,并进一步展望了碲纯化的重要发展方向。