PtCo合金电催化剂在燃料电池氧还原催化中的研究现状与进展

摘要:质子交换膜燃料电池(PEMFC)具有高效、低温、环保等优点,是解决能源短缺和环境污染双重问题的潜在方案。然而,其阴极氧还原反应(ORR)中迟缓的动力学过程不得不依赖稀缺昂贵的Pt基催化剂,这阻碍了PEMFC技术的进一步发展和应用。为了降低成本并保证高效的催化性能,近年来研究人员已开发了多种技术策略,引入过渡金属与Pt合金化为主要策略之一,特别是PtCo双金属催化剂,它表现了更优异的ORR催化性能。本文综述了PtCo合金催化剂在PEMFC氧还原催化中的最新进展和现状,总结了催化剂组分控制、粒径调控、晶面调控、掺杂等调控策略对燃料电池催化活性的影响,详细介绍了最有前途的PtCo合金结构,如多面体、核壳、纳米框架、有序金属间结构等PtCo合金催化剂,并对催化剂载体研究进行了讨论,最后指出了PtCo合金催化剂在其应用中存在的挑战以及未来前景。

铁捕集铂族金属合金的电化学回收工艺研究

摘要:低温铁捕集技术是一种从废催化剂中富集铂族金属(PGMs)的有效技术。然而,铁捕集得到的铁-铂族金属合金具有硬度大、惰性高的特点,导致溶解缓慢。此外,废催化剂中的Mn,Ni,Cr等杂质元素也会进入到合金中,造成后续分离困难。本文以铁-铂族金属合金为原料,利用金属间的电化学性质差异,研究直流电解回收铁、阳极泥酸浸和电沉积分离提纯铂族金属。结果表明,Fe2+的氧化以及阴极析氢反应是电解阶段主要的副反应。在电压为1.0 V, 初始Fe2+浓度为0.7mol·L−1,温度为60℃条件下,经2 h电解,铁-铂族金属合金质量损失和阴极电流效率分别达到34.78%和62.97%。合金中的碳等杂质形成外层抑制了离子扩散,阻碍铁溶解。电解后,PGMs由于高电负性难以氧化- 络合溶解, 被富集在阳极泥中。阳极泥经酸浸、过滤后进行直流恒压电沉积, 当电压为0.45 V时,沉积物主要为Pd,微观形貌呈枝状;随着电压的增加,阴极析出Pt和Rh, 沉积层呈块状堆积。在0.65 V下电沉积3h可回收61.83%的Pt,77.28%的Pd以及55.20%的Rh,实现了杂质的去除;动力学研究表明Pd的电极反应速率受扩散过程控制。本文研究为废催化剂中铂族金属的高效、环保回收提供了可靠的新方法。

铂银与铂金合金纳米材料研究进展

摘要:Pt-Ag和Pt-Au合金具有高强度、高弹性、高催化活性、高稳定性等优点,在现代化学工业、电气和电子工业等领域有重要的应用。近年来,Pt-Ag和Pt-Au 合金特别是纳米材料在新能源、信息技术、环境保护和生物医药领域的应用研究有了飞速发展。本文介绍了Pt-Ag合金在电催化技术、光催化技术、环保、生物医药、化工等领域和Pt-Au合金在新能源、传感器技术、环保、生物医药、化工等领域的应用研究进展,并展望了其发展方向。

WC含量对激光熔覆CoCrFeNiTi高熵合金涂层组织及耐腐蚀性能的影响

摘要:为了延长脱硫浆液循环泵叶轮的寿命,采用激光熔覆技术在脱硫浆液循环泵叶轮的母材30CrMnSiA钢表面制备了WC增强CoCrFeNiTi-WCx(x=0,5,10,15,20,质量分数,%)高合金涂层,研究了WC含量对涂层的显微组织、力学和耐蚀性能影响。研究发现 CoCrFeNiTi高熵合金涂层相组成为fcc(Fe-Ni)、bcc(Fe-Cr)、Laves(CoTi2)和AB-type(Ti的化合物),随着WC含量增加,Laves相衍射峰强度增强,且生成了新相碳化物(WC、TiC、Cr7C3和Fe3C)。CoCrFeNiTi高合金涂层主要组织为底部的胞状晶和顶部的等轴枝晶,随着WC含量增加,涂层组织主要为等轴枝晶,且晶粒尺寸逐渐细化。WC的加入提高了涂层的性能,其中CoCrFeNiTi-20%WC涂层硬度(HV0.2)最大,为6419MPa,且摩擦系数(0.664)和磨损率(1.3×102μm(s-N)-1)最小,耐磨性能最好,磨损机制主要为轻微的黏着磨损和磨粒磨损。此外,随着WC含量的增加,涂层表现出更低的腐蚀速率和腐蚀电流。其中,CoCrFeNiTi-20%WC涂层腐蚀电流最小,耐腐蚀性能最好。

镍基高温合金表面冲击强化机制及应用研究进展

摘要:为满足不断攀升的两机涡轮动力系统的快速发展,表面冲击强化技术在涡轮转子用高温合金表面强化的应用及相应机制的研究受到了广泛关注。然而,高温合金表面硬化层在高温服役环境下的回复、再结晶行为难以避免,由此引起的表面强韧化、抗疲劳效果的退化,成为制约表面冲击强化技术在先进高温合金关键部件深入应用的瓶颈。本文总结了近年来镍基高温合金表面冲击强化机制及应用研究进展,分析了表面冲击强化对镍基高温合金表面强韧性及抗疲劳的作用规律,探究了高温合金表面冲击硬化层在高温及长期时效过程中的显微组织、微结构演化及其对高温稳定性的作用机理。以期为发展镍基高温合金表面冲击强化、提高两机涡轮转子疲劳抗力提供基础。

新型ECAP工艺制备超细晶材料研究进展

摘要:等径角挤压(equal channel angular pressing,ECAP)因可制备出超细晶材料而受到界内广泛关注。其制备出块体超细晶材料具有优异的力学性能与耐腐蚀性能,目前已在航空航天、生物医疗、机械电子等领域得到率先应用,成为国内外材料学者研究的热点。然而, ECAP技术在发展和应用过程中仍然受到多重限制。对ECAP工艺进行优化与改进已成为发展趋势。初期,诸多学者通过实验研究证明:新型ECAP可达到“一次挤压,多次应变”的效果,晶粒细化更加明显,可制备出力学性能优异的材料。近年相关学者采用有限元模拟方法,探究新型ECAP技术的影响因素,从而对生产进行指导。本文评述了近年来国内外新型ECAP制备超细晶材料相关研究进展,从工艺原理出发,将新型ECAP工艺分为工艺优化与模具改进两大类,重点对7种不同新型ECAP工艺及研究现状进行归纳总结,对不同ECAP工艺后超细晶材料的显微组织、力学性能进行深入分析, 最后对新型ECAP制备超细晶材料过程中存在的问题与今后的研究方向进行总结与展望,以期为开发晶粒细化效果更佳、生产效率更高的剧烈塑性变形技术提供参考。

镍基单晶高温合金的研发进展

摘要:单晶高温合金是先进航空发动机、燃气轮机的核心热端材料,单晶叶片要求高、制造工艺复杂、容错空间小,在高温、复杂应力、氧化和热腐蚀等苛刻环境下工作。本文概述了近几年镍基单晶高温合金在合金研制、组织性能演化和表征、近服役环境下力学行为评价以及叶片制造工艺等方面的研发进展,并简单介绍了难熔高熵合金等“下一代”新型高温结构材料的研发情况。

矿用硬质合金摩擦、腐蚀行为研究进展

摘要:硬质合金是一种包括硬质相(WC)和软粘结相(Fe、Co、Ni、HEA等)的金属陶瓷,其耐摩擦、高硬度、热硬性好等优良特性的组合使得硬质合金被广泛应用于矿山、隧道、钻井等地质工程。由于实际服役环境复杂,矿用硬质合金常面临极端恶劣的工况,存在诸多失效机制,例如摩擦、腐蚀和热冲击等一种甚至几种共同作用都会造成硬质合金材料的失效。因此,了解矿用硬质合金的失效机理,对不同环境下选用和改进硬质合金材料具有重要意义。本文对矿用硬质合金的摩擦、腐蚀行为进行了综述,重点涉及环境和热应力对硬质合金失效的影响,此外,由于成分对硬质合金的微观结构和力学性能具有重要的影响,还综述了粘结相和添加剂的加入对硬质合金摩擦、腐蚀行为的影响。旨在为后续硬质合金的选择、改进和新型硬质合金开发提供参考。

自钝化钨合金高温氧化性能研究现状

摘要:钨因具有高熔点、高硬度和优良的抗离子溅射性能,被选为聚变堆面向等离子体第一壁的重要候选材料。但是钨的抗氧化性能较差,严重限制了其工程应用。通过添加钝化元素制备自钝化钨合金,可形成保护性氧化膜改善其抗氧化性能。与纯钨相比,自钝化钨合金的抗氧化性能提高了2~4个数量级。近年来,研究者从成分设计和成分优化对自钝化钨合金开展了大量研究, 取得了丰硕成果。通过添加Si或Cr制备的W-Si或W-Cr二元自钝化钨合金,因可形成SiO2 或Cr2O3 保护膜,其抗氧化性能明显提高。在二元自钝化钨合金基础上,通过添加活性金属元素如Y,Zr改善氧化产物与合金基体的结合力,发展了三元和四元自钝化钨合金,进一步改善了其抗氧化性能。总结归纳了自钝化钨合金的研究进展,从氧化前后显微结构、物相分析、氧化增重等方面论述了其氧化过程及机制。在此基础上,指出了自钝化钨合金面临的问题并对其发展前景进行了展望。

砷化镓废料回收再生研究进展

摘要:随着科技的进步与发展,以砷化镓为代表的二代半导体材料已逐渐取代硅材料应用于电子通讯、国防、航空航天等领域。每年在砷化镓晶体制备、设计加工、产品应用环节都会产生大量废料函待处理。砷化镓废料作为含砷有毒废弃物,蕴藏着品位高、存量大的碑、资源,近年来砷化镓废料的清洁、高效回收受到广泛关注。从砷化镓产业链角度出发,总结了上、中、下游产生的砷化镓废料来源与成分间的差异,详细综述了砷化晶体切割废料、砷化镓加工废料、废旧砷化镓电子器件这3类砷化镓废料二次资源的回收工艺与现状,归纳了不同方法的技术指标及工艺特点,重点对真空热分解法处理砷化废料的相关研究进行了探讨,并展望了砷化废料回收技术的未来发展方向。