人工智能在血液疾病诊疗中的应用研究进展

摘要:血液疾病指原发于造血系统或主要累及血液和造血器官的疾病, 主要包括良性血液疾病和恶性血液疾病两种类型, 不仅对患者的生活质量和生命安全造成负面影响, 也给家庭和社会带来了沉重的负担. 随着计算机与机器学习等相关技术的快速发展, 人工智能已被广泛应用于医学领域和临床研究. 在血液疾病诊疗方面, 基于随机森林、决策树、支持向量机和线性回归等机器学习算法构建的人工智能模型展现出了卓越的工作效能, 在合理利用既有数据、图像识别和组学分析等任务中取得了优于传统方法的表现. 本文综述了人工智能应用于血液疾病预测、诊断、预后评估与治疗指导领域的研究进展, 总结了人工智能技术在该领域的突出成果与局限性, 以期为推动机器学习技术进一步应用于血液疾病诊疗提供参考.

医用钛及钛合金表面涂层研究进展

摘要: 概述了钛及钛合金在医学领域的发展现状,以及常用的钛及钛合金表面处理技术,重点介绍了医用钛及钛合金表面耐蚀耐磨涂层、生物活性涂层和表面抗菌涂层的研究现状和发展趋势。在钛及钛合金表面制备涂层能够使其更适合作为植入物在医学领域应用,但由于涂层自身还存在一定局限性,临床试验也需要大量的时间,目前涂层还没有大规模应用到临床医疗中。为了尽可能地改善单一涂层存在的缺陷,多组元、多层复合涂层是目前医用钛及钛合金表面涂层的研究重点。

碳点药物载体在肿瘤治疗中的应用进展

摘要:碳点是一种新型的零维碳基纳米材料,具有小尺寸、低毒性以及表面易于功能化等诸多优点。碳点的出现为靶向递送药物实现癌症治疗提供了新思路。本综述系统阐述了碳点作为载体在药物递送方面的应用进展。首先,阐述了碳点的分类以及合成方法;其次,总结了国内外近年来基于碳点的不同种类药物(化疗药物、光敏剂、光热剂等)的递送研究进展;最后,对现阶段面临的挑战和应用前景进行了探讨,以期为从事碳点在药物递送方面研究的科研人员提供一些思路。

金属基纳米药物及其免疫调控效应

摘要:金属基纳米材料在生物医学领域中具有重要的应用前景, 对肿瘤、细菌感染、流行病、炎症等疾病的防治和诊断至关重要. 随着金属免疫学逐渐受到广泛关注, 为了充分发挥金属基纳米药物的免疫调控作用, 需对其相关机制进行系统性的深入研究. 本文基于金属基纳米药物独特的生物学效应, 综述了其在免疫调控中的应用, 主要包括以下几个方面: (1) 免疫调节性金属基纳米药物的组成及其在各种疾病防治中的应用; (2) 金属基纳米药物介导免疫应答的机制; (3) 金属基纳米药物与生物系统相互作用及其分析方法. 在此,我们分别从金属基纳米药物介导先天免疫信号转导、调控适应性免疫应答和诱导黏膜免疫反应三个方面详细阐述了这些金属基纳米药物与主要免疫系统组分的作用. 此外, 我们还特别关注了金属基纳米药物在免疫调节过程中与生物分子、细胞器、细胞和组织之间的相互作用, 并总结了相关的分析方法. 最后, 我们对金属基纳米药物在免疫调控应用研究中的不足进行了讨论和展望, 并对其在免疫调控和临床转化中面临的挑战以及该领域的未来发展趋势进行了讨论.

临床医用金属植入体及器械

摘要:临床医用材料是能够植入到生物体中与生物组织结合并修复的材料,或用于制造临床医用器械的材料。常见的临床医用金属材料包括不锈钢、钛合金、钴合金、锆合金、铝合金、可降解的镁合金和锌合金、形状记忆合金以及其他生物医用金属等。本文从材料属性分类类比到临床医用材料分类的具体涵义,聚焦临床医用金属类型及其相应的临床医用制品和器械,并用直观的视图展示了临床医用合金物化的典型代表,深入浅出描述了金属材料在临床中的应用,对临床医用金属材料的科学普及发挥巨大的作用,为交叉学科从业者进一步优化材料和性能设计奠定坚实的基础。

基于无机纳米材料的抗菌抗病毒功能涂层和薄膜

摘要: COVID-19在全球的大流行对人类的健康生活和社会的正常运行都造成了严重的危害. 阻断致病微生物通过受污染表面与人类间接接触传播, 或者避免与其直接接触是保护我们免受伤害的主要方法. 目前的解决措施包括设计开发抗菌抗病毒表面涂层和研发由自清洁薄膜或织物制成的个人防护设备. 综述了近年来几种研究广泛的金属、金属氧化物、金属有机框架材料等用于抗菌抗病毒涂层或薄膜的工作, 对其作用机制和微生物灭活效果进行了总结讨论, 并且评估了其本身的毒性以及实际应用的局限性, 最后就抗菌抗病毒涂层和薄膜开发的挑战和新兴研究方向提出了未来展望.

纳米药物研发与商业化趋势统计分析

摘要: 纳米药物是纳米技术在医药领域的应用。与常规药物相比,纳米药物在实现靶向给药、缓控释给药、提高药物溶解度及生物利用度、降低毒副作用等方面具有良好的发展前景。本研究通过统计数据分析纳米药物从理论研究探索到商业上市各阶段的发展状况,包括纳米药物数量、重要研发国家与公司、主要适应症与作用机制的分布、具有较高商业价值的热点药物等,分析纳米药物的总体发展趋势,揭示其竞争态势和主要发展方向。

肿瘤治疗性mRNA疫苗的研发进展

摘要:近年来, 肿瘤疫苗作为肿瘤免疫疗法的重要组成部分, 已经取得了显著的进展. 肿瘤治疗性mRNA疫苗通过递送肿瘤相关抗原或肿瘤特异性抗原, 激发机体产生特异性免疫反应, 以识别并杀伤肿瘤细胞. 相较于其他类型的肿瘤疫苗, mRNA疫苗因其独特的优势, 在临床试验中展现出良好的治疗效果和巨大的应用潜力. mRNA疫苗的优势在于其快速的开发周期、高度的特异性, 以及能够激发强烈的免疫反应. 它们不整合入宿主基因组, 降低了安全性风险, 同时可以快速应对病原体的变异. 此外, mRNA疫苗的稳定性可以通过特定的修饰来提高, 增强其在体内的持久性和翻译效率, 从而增强疫苗的效果. 目前, 多种个体化mRNA肿瘤疫苗在临床试验中表现出较好的安全性及免疫原性, 显示了其作为肿瘤治疗工具的潜力. 本文总结了肿瘤治疗性mRNA疫苗的构成、优势、稳定性提高方法、作用机制、给药途径、递送系统、局限性和挑战等, 旨在促进肿瘤治疗性mRNA疫苗的发展和应用.

面向类脑计算的低电压忆阻器研究进展

摘要:忆阻器是非易失性存储器和神经形态计算的优秀候选者. 电压调制作为其关键性能策略, 是获得纳瓦超低功耗、飞焦超低能耗工作的基础, 有助于打破功耗墙、突破后摩尔时代算力瓶颈. 然而基于高密度集成忆阻器阵列的类脑计算架构还需重点考虑开/关比、高速响应、保留时间和耐久性等器件稳定性参数. 因此如何在低电场下实现离子/电子的高效、稳定驱动, 构筑电压低于1 V 的低电压、高性能忆阻器成为了当前实现类脑计算能效系统的关键问题. 本文综述了近年来面向类脑计算的低电压忆阻器的研究进展. 首先, 探讨了低电压忆阻器的机制, 包括电化学金属化机制和价态变化机制. 在此基础上, 系统总结了各材料体系在低电压忆阻器中的优势, 涵盖了过渡金属氧化物、二维材料和有机材料等. 进一步围绕材料工程、掺杂工程、界面工程提出了相应的低电压忆阻器实现策略, 最后, 展望了基于低电压忆阻器的类脑功能模拟及神经形态计算应用, 并对现存问题和未来研究方向进行了讨论.

微纳电子器件在疾病微创诊断与治疗中的研究进展

摘要:随着微纳加工技术和新材料工艺的不断创新, 应用于疾病诊断和治疗的电子器件呈现出小型化、柔性化和多功能化的发展趋势. 在医学诊断和治疗领域, 微创电子器件发挥着越来越重要的作用. 微创诊断电子器件提供了靶向引导、手术监控和连续性诊断等功能, 为组织病变的原位诊断提供了有效手段. 微创治疗电子器件通过个性化调控的方式, 为疾病治疗提供了多种选择, 显著降低了患者的生理损伤和术后风险, 提高了患者的康复速度. 本文综述了应用于组织病变微创诊断与治疗的微纳电子器件的类型、特征及其设计思路, 并从生化诊疗和物理诊疗技术的角度对其进行技术分析. 最后, 讨论了目前微纳电子器件在疾病微创诊断和治疗应用中面临的挑战与机遇.