纳米药物递送系统:胰腺癌靶向策略的新选择

摘要:胰腺导管腺癌 (PDAC)是一类进展迅速、早期诊断困难的恶性消化系统实体肿瘤,多数患者就诊时已失去根治性手术切除机会。PDAC组织中的多种细胞成分和非细胞成分组成复杂的调控网络,共同塑造了代谢异常的肿瘤微环境,导致临床化疗和免疫治疗等效果受限。纳米技术的发展为PDAC的高效药物递送和精准靶向治疗提供了新思路。本文从靶向肿瘤细胞与肿瘤微环境两个方面,综述了近年来基于纳米药物递送系统的PDAC治疗策略,并总结了本团队在相关领域的研究进展,为胰腺癌的治疗提供参考。

腰带型人体微环境可视化监测系统柔性集成与可穿戴应用研究

摘要:微电子系统的创新功能设计及其柔性集成封装是推进智能可穿戴设备在主动健康监测领域应用发展的核心动力. 本研究采用控制处理芯片、温湿度传感器、信号采集与无线传输模块以及光纤等光/电子元器件和功能模块设计与开发了一套温湿度数据可视化监测系统,并基于超低模量有机硅非水凝胶和3D间隔织物为主要材料复合制备了一种兼具本征和结构柔性的可拉伸电路板对其实现了一体柔性集成与封装,发展得到了一款可穿戴人体微环境(数据)可视化监测功能腰带. 所使用的新型有机硅非水凝胶复合织物材料杨氏模量和抗弯刚度分别仅为0.113 MPa和114.680 mN·mm,在充分保留原织物基底柔软顺应性的同时,还有效地引入了有机硅类材料固有的优异生物相容性、疏水性和电绝缘性,并实现了断裂拉伸强度和断裂拉伸率等力学性能的进一步增强,分别提高了48.775%和22.507%. 经其集成与封装得到的人体微环境可视化监测功能腰带采用假人进行穿戴模拟测试,通过可拉伸光纤显示板颜色变化成功地实现了人体微环境温湿度变化情况实时探测和监控. 该功能腰带还可通过与手机和电脑等设备进行连接,实现人体微环境数据的移动监测和云存储,在老年人卧床护理等特殊护理领域显示出优异的应用潜力.

生物医用高分子材料细胞膜表面功能化的策略与应用

摘要:细胞膜是细胞的外层包裹结构,保护细胞内部免受外界干扰. 通过对细胞膜进行修饰,引入特定的分子或结构,可以实现对细胞命运和功能的调控,从而赋予细胞特殊的功能. 近年来,利用高分子材料在细胞膜上发生自组装的策略用于功能化修饰细胞膜表面已被广泛研究. 本文综述了利用高分子、多肽及DNA纳米材料对细胞膜进行修饰的策略,总结了其带来的包括受体寡聚化、细胞膜通透性改变以及调节细胞间通讯的生物效应以及细胞膜表面功能化的生物应用.

齿科修复用氧化锆陶瓷的增材制造现状及进展

摘要:氧化锆陶瓷因其高强度、耐腐蚀、菌斑黏附率低以及良好的生物相容性和美观性,成为牙科修复用全瓷材料的理想选择。但传统的减材制造工艺材料浪费严重,微小结构加工受限,难以高效生产优质产品。而增材制造技术的灵活性和自由度,不仅能实现牙科修复用氧化锆陶瓷高效快速制备,还能满足牙科领域精准、复杂的个性化需求。本文从氧化锆陶瓷材料性能、增材制造技术及应用三个方面,归纳了牙科修复用氧化锆陶瓷的研究进展,并对相关增材制造技术进行深入探讨,特别关注了光聚合成型、材料挤出和材料喷射等关键技术在牙科修复中的应用和前景。最后总结了本文的主要观点,并对未来增材制造牙科修复用氧化锆陶瓷的研究方向和可能的挑战进行了展望。

智能蛋白质工程

摘要:蛋白质是生命活动的重要基础物质,在生物体内扮演着多种关键角色,包括构建细胞结构、参与代谢和能量转化、调节生理功能、提供免疫保护、传递信号等。蛋白质多样化的功能是通过其特定的氨基酸序列,以及相应的三维结构来实现的。蛋白质工程通过改变或设计蛋白质的序列与结构来实现特定的功能,从而扩展对蛋白质的理解,并为生物医学、生物材料、生物工程及其他领域的研究提供强大的工具和技术支持。近年来,随着算法的进步、大数据的积累,以及硬件计算能力的提升,人工智能技术得到了快速发展,并逐渐应用于蛋白质工程领域,形成了智能蛋白质工程。通过运用基因组、蛋白质组、蛋白质结构数据库等生物学大数据,以及在数据基础上建立各类先进的深度学习模型,智能蛋白质工程能够实现高效、精准、可预测的蛋白质设计和改造。本文主要侧重于智能蛋白质工程的四个方面,即结构设计、无骨架的序列设计、基于骨架的序列设计,以及其他辅助设计方法,总结了人工智能技术在这些领域取得的最新进展,并汇总了近年来采用智能蛋白质工程技术取得的实践成果。智能蛋白质工程作为一种新兴的技术和方法,展示了巨大的潜力和前景,为未来科学研究和技术创新带来深远的影响,并为解决全球性挑战提供新的解决方案和工具。

生物质基抗菌材料制备及其应用进展

摘要:应对病原微生物(如细菌)感染是人类生命健康所面临的挑战之一. 生物质基抗菌材料具有可再生、可降解、可改性及生物相容性好等优点, 是近年来的研究热点之一. 本文系统综述了近年来纤维素、木质素及壳聚糖等代表性生物质基抗菌材料的制备及其应用进展, 涵盖生物质抗菌原理分析、材料制备方法及其抗菌性能优化策略(如季铵化、氨基硅烷化、羧甲基化、硫醇化等结构改性, 以及纳米金属或金属氧化物颗粒组成复配等). 重点介绍了生物质基材料与抗菌分子的接枝原理、金属或非金属复合材料性质及实际应用情况(如医疗、食品保鲜、日用化妆品、纺织及污水处理等). 最后, 总结了生物质基抗菌材料的研发现状和挑战, 并对其未来的发展趋势进行了展望.

纳米硒的功能设计及其在肿瘤精准治疗中的应用进展

摘要:纳米硒作为一种新型单质硒,与有机硒和无机硒相比具有更高的生物利用度,更强的生物活性和更低的毒性,并且具有抗氧化和抗肿瘤的作用。概述了纳米硒在生物医药中的应用,包括纳米硒用于化疗、放疗、放化疗以及其他临床药物的增敏,纳米硒的功能化和靶向修饰增强抗肿瘤效果,含硒纳米材料在抗肿瘤中的应用,纳米硒的毒理学,介绍了纳米硒制剂产业化发展情况。

生物可降解聚酯/生物陶瓷3D打印骨组织工程支架研究进展

摘要 :移植骨植入物是目前治疗骨缺损的公认有效手段之一。生物可降解聚酯/生物陶瓷复合材料结合了生物可降解聚酯的良好力学性能、可降解性能和生物陶瓷的成骨活性,为骨植入物材料提供了新的选择。骨组织工程通过模拟骨骼微环境,加速骨缺损修复。将生物可降解聚酯/生物陶瓷复合材料制备成骨组织工程支架,能进一步加快骨修复进程。3D 打印技术的引入能使生物可降解聚酯/生物陶瓷骨组织工程支架的制备过程精确、可重复且具备高自由度,展现出了良好的发展前景。本文阐述了骨组织工程支架应具备的各项性能,总结了近年来国内外学者对生物可降解聚酯/生物陶瓷骨组织工程支架上述性能的改善策略,并展望未来该研究领域的发展方向。

金属镁催化高张力三元环系的不对称开环反应

摘要:利用储量丰富、廉价易得、低污染元素作为催化资源构筑重要立体化学结构具有重要研究意义. 含杂原子的手性化合物, 例如手性氨基醇类、手性酰胺类、取代四唑类, 吲哚衍生物、吡咯烷衍生物等结构单元广泛存在于天然产物中, 并且在药物研发过程中具有重要的价值. 高效构建以上结构单元一直以来都是化学、生命科学、药学科研工作者重点关注的问题. 三元环系结构具有较大的环张力, 导致其稳定性低, 因此具有较高的反应活性.重要三元环系化合物主要包括: 环氧乙烷(oxirane)、氮杂环丙烷(aziridine)以及供体-受体环丙烷(donor-acceptor,D-A cyclopropane), 这些结构的不对称开环反应成为构建上述重要结构骨架的合成砌块. 值得注意的是, 近些年在金属催化剂催化策略下, 经三元环类化合物的不对称开环反应高效构建高对映选择性的含杂原子结构片段及杂环骨架受到了广泛的研究关注. 同时, 伴随了多种催化策略的发展. 本文主要综述了近年基于金属镁催化策略的三元环类化合物不对称开环反应研究进展, 讨论了基于不同类型亲核试剂及催化条件下的开环反应途径和方法, 阐述了反应的相关应用, 探讨了部分机理过程. 最后, 对三元环类化合物不对称开环反应当前的发展状况进行了总结,并在此基础上进行了相关展望.

面向穿戴或植入式临床应用的ssDNAGFET纳米生物传感器发展现状

摘要:单链DNA探针-石墨烯场效应管(ssDNA-GFET)纳米生物传感器在可穿戴或可植入式临床应用领域有着广泛前景。介绍了现有ssDNA-GFET的应用、标志物检测性能提升方法、真实人体样本溶液中标志物检测,以及面向可穿戴或可植入式临床应用的柔性化研发现状,总结了ssDNA-GFET在投入实际可穿戴或可植入式临床应用前有待解决的问题。