基于荧光方法的循环肿瘤细胞检测研究进展

摘要:循环肿瘤细胞(Circulating tumor cells,CTCs)是指从恶性肿瘤的原发或转移部位脱落的细胞,通过血液循环到达全身。体内CTCs的存在可以反映肿瘤的发生与发展,对肿瘤的诊断和预后至关重要。然而,实现高纯度捕获和捕获后CTCs灭活阻断仍然面临许多挑战。目前开发的用于实现选择性分离CTCs的方案中,荧光方法由于具有高灵敏度、高分辨率、操作简便等特点,在无创检测和快速检测方面具有重要的应用前景。与以往的CTCs研究综述相比,本文详细介绍了CTCs从体外捕获到体内捕获再到下游分析的全过程,并对CTCs的完整诊疗过程进行了系统和详细的总结,为当前的研究提供了新思路,这对于实现早期循环肿瘤细胞的诊断与治疗具有较重要意义。

可降解镁基复合材料的制备及其在骨科领域的研究进展

摘要:可降解镁基材料因与骨相匹配的弹性模量和优良的成骨性能,成为21 世纪极具前景的骨科植入材料。本工作总结了镁基复合材料在骨修复中的应用现状和发展趋势。首先,介绍了镁基复合材料的制备工艺及其优/缺点,着重分析了增强体选择对力学性能和降解行为的影响,并阐述了镁基复合材料在骨折固定、骨缺损修复等领域所取得的临床前研究进展,证实了其生物活性和临床安全性。随后,讨论了镁基复合材料在降解过程中对干细胞成骨分化的影响及相关分子机制。最后,结合现有临床前研究成果,归纳了镁基复合材料在骨修复应用中面临的挑战,并对其未来发展方向进行展望。

医用镁合金体内降解行为与表面改性研究进展

摘要:医用镁合金具有良好的生物相容性、优异的综合力学性能以及独特的可降解性,是人体非重要承力部位的理想植入材料,但是过快的降解限制了其临床应用。探索更加适合镁合金的植入部位并通过表面改性技术使其降解速率与组织修复过程达到同步是突破临床应用瓶颈的关键。近年来,国内外研究人员研究了体内不同植入环境中镁合金的腐蚀降解机理,利用适当的表面改性技术从涂层成分设计与组织优化角度对医用镁合金的降解行为进行了调控。本文分析了腐蚀介质种类、成分、浓度、流动状态等生理环境对医用镁合金降解行为的影响机制,总结了医用镁合金在骨科、心血管科、消化内科、泌尿外科等植入环境中降解行为的差异,综述了金属涂层、无机非金属涂层、有机高分子涂层、生物功能涂层、复合涂层调控医用镁合金降解行为的研究进展,展望了基于人体特定植入部位开发生物功能性涂层的研究思路,为促进镁合金植入器械的临床应用提供参考。

纳米材料用于放疗防护的研究进展

摘要:放射治疗是利用高能射线抑制癌细胞增殖的治疗方法, 已广泛用于恶性肿瘤的治疗. 但是, 高能射线不可避免地会对机体的正常组织造成损害, 产生放疗相关副作用. 尽管目前有一些小分子放疗防护药物已应用于临床或处于临床前研究, 但其较短的血液循环时间和较快的新陈代谢速度极大地削弱了其防护效果. 近20 年来, 随着纳米技术在生物医学领域的飞速发展, 纳米放疗防护剂的出现为提高防护效果提供了新的选择. 通过合理地设计和开发纳米放疗防护剂, 有望解决现有小分子放疗防护药物的缺陷. 鉴于纳米放疗防护剂具有诸多优势, 本综述概述了纳米放疗防护材料的常见设计策略, 同时分析了放射诱导的常见疾病的致病机制和纳米放疗防护材料防治各种放射诱导疾病的研究现状. 最后, 还讨论了纳米材料用于放疗防护所面临的挑战和未来前景.

动力学效应诱导的近红外光响应温和光热治疗

摘要:癌症是世界上高致死率的疾病之一,传统治疗方法如化疗、放疗和手术等由于其局限性而常常使疗效不尽如人意。光热疗法(Photothermal therapy, PTT)是基于光热治疗剂的光热转换效应,将近红外光能量转换为热能并杀死癌细胞。然而,PTT消融肿瘤所需的温度较高,通常会引起周围正常组织/器官的损伤。采用较低治疗温度(38~43 ℃)的温和光热治疗(Mild photothermal therapy, mPTT)对于推动PTT 进入肿瘤临床治疗具有重要意义。但是,即便小幅度的温度升高也会使癌细胞处于热应激状态并使热休克蛋白(Heat shock proteins,HSPs)表达上调,影响mPTT对癌细胞的杀伤效果。为了改善mPTT的治疗效果,本研究以树枝状介孔硅包覆稀土荧光纳米晶的纳米复合材料(DCNP@DMSN)作为基质材料,在其表面上修饰MnFe2O4 纳米酶并在孔道内装载吲哚菁绿(ICG),设计了一种近红外荧光成像介导和动力学效应诱导的近红外光(NIR)响应mPTT协同治疗体系。该体系呈现出肿瘤微环境响应的化学动力学效应和近红外光激发的光动力学效应,产生的活性氧物质及脂质过氧化物可下调低温光热处理产生的热应激性HSP70的表达,实现动力学效应诱导的mPTT,在4T1 乳腺癌中显示出良好的抗肿瘤性能。同时,该平台具备近红外二区荧光成像功能,可实现对活体肿瘤的定位。这对开发多功能诊疗一体化纳米平台,实现治疗过程的可视化、个体化以及精准化,改善肿瘤治疗效果具有重要意义。

人工智能在血液疾病诊疗中的应用研究进展

摘要:血液疾病指原发于造血系统或主要累及血液和造血器官的疾病, 主要包括良性血液疾病和恶性血液疾病两种类型, 不仅对患者的生活质量和生命安全造成负面影响, 也给家庭和社会带来了沉重的负担. 随着计算机与机器学习等相关技术的快速发展, 人工智能已被广泛应用于医学领域和临床研究. 在血液疾病诊疗方面, 基于随机森林、决策树、支持向量机和线性回归等机器学习算法构建的人工智能模型展现出了卓越的工作效能, 在合理利用既有数据、图像识别和组学分析等任务中取得了优于传统方法的表现. 本文综述了人工智能应用于血液疾病预测、诊断、预后评估与治疗指导领域的研究进展, 总结了人工智能技术在该领域的突出成果与局限性, 以期为推动机器学习技术进一步应用于血液疾病诊疗提供参考.

医用钛及钛合金表面涂层研究进展

摘要: 概述了钛及钛合金在医学领域的发展现状,以及常用的钛及钛合金表面处理技术,重点介绍了医用钛及钛合金表面耐蚀耐磨涂层、生物活性涂层和表面抗菌涂层的研究现状和发展趋势。在钛及钛合金表面制备涂层能够使其更适合作为植入物在医学领域应用,但由于涂层自身还存在一定局限性,临床试验也需要大量的时间,目前涂层还没有大规模应用到临床医疗中。为了尽可能地改善单一涂层存在的缺陷,多组元、多层复合涂层是目前医用钛及钛合金表面涂层的研究重点。

碳点药物载体在肿瘤治疗中的应用进展

摘要:碳点是一种新型的零维碳基纳米材料,具有小尺寸、低毒性以及表面易于功能化等诸多优点。碳点的出现为靶向递送药物实现癌症治疗提供了新思路。本综述系统阐述了碳点作为载体在药物递送方面的应用进展。首先,阐述了碳点的分类以及合成方法;其次,总结了国内外近年来基于碳点的不同种类药物(化疗药物、光敏剂、光热剂等)的递送研究进展;最后,对现阶段面临的挑战和应用前景进行了探讨,以期为从事碳点在药物递送方面研究的科研人员提供一些思路。

金属基纳米药物及其免疫调控效应

摘要:金属基纳米材料在生物医学领域中具有重要的应用前景, 对肿瘤、细菌感染、流行病、炎症等疾病的防治和诊断至关重要. 随着金属免疫学逐渐受到广泛关注, 为了充分发挥金属基纳米药物的免疫调控作用, 需对其相关机制进行系统性的深入研究. 本文基于金属基纳米药物独特的生物学效应, 综述了其在免疫调控中的应用, 主要包括以下几个方面: (1) 免疫调节性金属基纳米药物的组成及其在各种疾病防治中的应用; (2) 金属基纳米药物介导免疫应答的机制; (3) 金属基纳米药物与生物系统相互作用及其分析方法. 在此,我们分别从金属基纳米药物介导先天免疫信号转导、调控适应性免疫应答和诱导黏膜免疫反应三个方面详细阐述了这些金属基纳米药物与主要免疫系统组分的作用. 此外, 我们还特别关注了金属基纳米药物在免疫调节过程中与生物分子、细胞器、细胞和组织之间的相互作用, 并总结了相关的分析方法. 最后, 我们对金属基纳米药物在免疫调控应用研究中的不足进行了讨论和展望, 并对其在免疫调控和临床转化中面临的挑战以及该领域的未来发展趋势进行了讨论.

临床医用金属植入体及器械

摘要:临床医用材料是能够植入到生物体中与生物组织结合并修复的材料,或用于制造临床医用器械的材料。常见的临床医用金属材料包括不锈钢、钛合金、钴合金、锆合金、铝合金、可降解的镁合金和锌合金、形状记忆合金以及其他生物医用金属等。本文从材料属性分类类比到临床医用材料分类的具体涵义,聚焦临床医用金属类型及其相应的临床医用制品和器械,并用直观的视图展示了临床医用合金物化的典型代表,深入浅出描述了金属材料在临床中的应用,对临床医用金属材料的科学普及发挥巨大的作用,为交叉学科从业者进一步优化材料和性能设计奠定坚实的基础。