TiAl合金的高温抗氧化涂层研究进展

摘要:TiAl合金具有低密度、高熔点、良好的阻燃能力和优异的力学性能,成为航空航天领域具有竞争力的结构材料之一。但是TiAl 合金在高温服役过程中抗氧化能力不足的问题严重阻碍了其发展。近年来,众多学者在TiAl 合金表面高温抗氧化涂层方面开展了大量研究。本文主要从铝及铝化物涂层、硅改性铝化物涂层、MCrAlY涂层、Ti-Al-Cr 涂层和氧化物涂层五种不同的涂层体系出发,系统总结了各类涂层常见的制备工艺、组织形成机理、氧化行为及其失效机制,并对抗氧化涂层未来的发展趋势做了展望。

Al-RE系耐热铝合金的研究进展

摘要:近年来,铝合金作为轻量化材料在汽车工业、航空航天、船舶海洋及其他装备制造领域得到广泛应用。上述工业应用场景对300 ℃以上的中、高温环境的服役需求越来越迫切,而现有的耐热铝合金并不能满足其需求。新近发展的以稀土元素(RE)作为主合金化元素的Al-RE 系耐热铝合金,鉴于其优异的高温性能与蠕变抗力,以及微观结构所具备的可设计性和可控调性,展现出了巨大的工程应用潜力。本文综述了近年来国内外关于Al-RE 系耐热铝合金的主要进展,包括以Al-Sc 和Al-Er 等为代表的时效析出强化型合金、以Al-Ce 为代表的共晶强化型合金和兼具前述时效析出相和共晶组织的复合强化型合金。本文对Al-RE合金中,不同合金体系的优缺点进行了充分的分析和总结,从主合金化元素、其他非稀土合金元素、热处理工艺制度和微观组织热稳定性等方面探讨了Al-RE 系合金的微观组织调控思路,并参考现有的耐热铝合金,综合评价了合金的室温拉伸性能和高温蠕变性能。最后,对Al-RE系耐热铝合金的发展进行了展望。

机器学习在增材制造轻合金疲劳寿命预测中的应用

摘要:增材制造作为一种先进制造技术,被广泛用于航空航天、生物医疗、汽车制造等领域。但是,由于其快速加热和冷却的工艺特征,导致增材制造产品的力学性能和疲劳行为与传统技术制造产品存在显著差异,因此采用常规方法很难准确预测其疲劳寿命。机器学习凭借其高效处理高维物理量之间复杂非线性关系的能力,为预测疲劳寿命开辟了新的途径。本文在综述疲劳寿命预测常用的机器学习模型基础上,以影响疲劳寿命的不同因素作为输入参数,综合分析了机器学习在增材制造轻合金疲劳寿命预测中的应用,阐明了机器学习在精确预测疲劳寿命中所面临的挑战,提出了机器学习预测增材制造疲劳寿命的研究方向,为改善增材制造轻合金疲劳寿命提供了新思路。

Mg-Zn系耐热镁合金抗蠕变性能的研究进展

摘要:当温度高于120 ℃时,镁合金的抗蠕变性能降低,耐热性能差,这限制了镁合金的广泛应用。为了扩大其应用范围,有必要提高其抗高温蠕变性能。本文从合金化方法、热处理工艺和变形工艺三个方面综述了Mg-Zn系耐热镁合金抗蠕变性能的研究进展。采用合金化方法,包括添加稀土元素、碱土元素、其他非稀土元素和混合添加稀土及非稀土元素,形成高热稳定性或半连续网络的析出相,钉扎晶界、阻止高温孪生;热处理产生的高密度片层有效防止蠕变变形;塑性变形虽会细化晶粒,促进晶界滑动,但含稀土元素的Mg-Zn合金变形后,合金产生晶界偏聚,界面能降低,晶界热稳定性提高,高温蠕变后细晶甚至纳米晶粒可保持不变,抗蠕变性能显著提高。最后对Mg-Zn系耐热镁合金的发展趋势进行了展望。

免热处理铝合金大型结构件一体压铸研究进展

摘要:在“双碳”目标下,新能源汽车市场占比逐年增加,同时其车身质量大、续航里程短等问题日益凸出,较重的车身会直接影响车辆的续航性能。免热处理铝合金大型结构件一体压铸技术为解决上述问题提供了可能。本文首先总结了免热处理铝合金材料的研究现状,针对元素配比及合金体系划分进行梳理;其次,分析不同工艺参数对压铸技术的影响规律,针对大型结构件一体压铸流程长、构型复杂等特点提出相应建议;再次,对大型压铸机结构优化、模具优化及热平衡问题进行分析,总结一体压铸装备发展现状,探讨未来关键技术走向。最后,对材料发展、模具设计、结构工艺优化等潜在问题进行总结与展望,为免热处理铝合金大型结构件一体压铸研究提供参考和指导。

增材制造铝合金成分设计研究进展

摘要:铝合金作为重要的工程材料,其应用越来越广泛,对应零部件的结构复杂性也越来越高。增材制造技术作为复杂结构零件的重要制备方法之一,近年来得到快速发展。但是,铝合金增材制造过程也面临诸多问题,需要从增材制造工艺方法和合金设计方面进行改善。本文总结了常用合金元素在增材制造铝合金中的作用,并对几种主要的增材制造合金体系及其合金设计的研究现状进行了介绍,包括Al-Si、Al-Cu、Al-Mg、Al-Zn-Mg-Cu、Al-Ce 等成分体系;同时,还总结了通过合理选择合金元素消除增材制造过程中的冶金缺陷的方法,以期为增材制造高性能铝合金的研究和应用提供参考。

高阻尼高强镁合金协同发展新策略:引入孪晶及晶粒细化

摘要:镁合金因其优异的阻尼特性而备受关注,然而传统阻尼镁合金普遍存在强度不足的缺陷。究其根源,镁合金的强化机制与阻尼机制存在本征性矛盾,导致两者难以协同提升。近年来研究发现,通过塑性变形引入孪晶组织可有效解决这一难题:一方面,孪生作为镁合金重要的塑性变形机制,能显著提升材料强度;另一方面,孪晶界面可增强界面阻尼效应,同步改善阻尼性能。此外,晶粒细化不仅能通过晶界滑移促进塑性变形,提升合金力学性能,还可能开辟新的阻尼耗散源。本文系统综述了孪晶组织和晶粒尺寸调控对镁合金力学−阻尼协同增强效应的研究进展,深入分析了现有研究中存在的关键科学问题与技术挑战,并对高强高阻尼镁合金的未来发展方向提出了前瞻性展望。

γ-GTiAl合金的加工特性及能场辅助技术研究进展

摘要:γ-GTiAl合金密度小、比强度高,具有优异的高温抗氧化性能,在航空航天领域有着广泛的应用潜力,然而,由于其高脆性和低室温塑性,被认为是典型的难加工材料,加工过程中存在高切削力、快速刀具磨损和表面缺陷等挑战.近年来,能场辅助加工技术为解决这些问题提供了新的思路.系统分析了γ-GTiAl合金的材料特性、加工特性及表面完整性,并重点探讨了能场辅助加工技术的研究进展,包括在减小切削力、延长刀具寿命及提升表面质量中的应用效果.同时梳理了当前研究的局限性,并提出了未来发展趋势,以期为γ-GTiAl合金的高效加工提供理论与技术参考.

含镁矿物提取金属镁工艺的研究进展

摘要:镁基材料以其优异的物理化学性质广泛应用于汽车、储氢材料、电子产品等领域,伴随着镁基材料消费市场的迅速增长,金属镁生产行业的发展对整个镁基材料市场的重要性将会进一步增加。中国目前主要的工业生产金属镁工艺为Pidgeon 法,该工艺较高的生产成本以及废弃物排放对环境的影响等问题日益凸显,对Pidgeon法工艺机理的研究与改进以及采用其他含镁矿物进行金属镁冶炼的工艺研究,一直是国内外学者不断研究的课题。本文归纳了包括白云石、菱镁矿、蛇纹石、水氯镁石、光卤石、盐湖卤水在内的含镁矿物作为原料的炼镁工艺,系统综述了不同原料不同工艺的反应机理与最新研究进展,展望了不同生产工艺的未来研究方向。

电弧熔丝增材制造铜合金研究进展

摘要:文章介绍了电弧熔丝增材制造可分为熔化极惰性气体保护焊(GMAW)、钨极惰性气体保护焊(TIG)以及等离子电弧焊(PAW)增材制造技术3类,3类技术制备铜合金时各有优劣,而基于GMAW 改进的冷金属过渡技术(CMT)则由于其优势被采用最多。电弧熔丝增材制造技术制备的铜合金组织与性能存在明显各向异性,通过热处理、低温处理等后处理工艺可进行一定程度的改善。电弧熔丝增材制造技术制备铜合金未来还需要在复合电弧增材制造工艺、组织与性能改善、材料类型-工艺-内部缺陷之间影响关系等方面进行深入研究。