铝锂合金熔炼及凝固成形技术研究进展

摘要:铝锂合金作为一种新型航空航天材料,因其具有低密度、高比强度和比刚度等优势,从而具有广泛的应用前景。现有关铝锂合金的研究多集中于微合金化及热加工工艺(如热挤压、热处理等),但忽视了热加工步骤前的原始铝锂合金锭料质量也会对合金最终性能产生很大影响。然而,目前对于铝锂合金锭料的熔炼及凝固成形技术的研究尚且不多。因此,本文从高真空和非真空2种环境下对铝锂合金锭料的制备技术进行了综述和总结,其中包括喷射成形、粉末冶金、超声辅助挤压铸造成形工艺等。本文深入分析了这些技术的优缺点,并提出制备铝锂合金锭料的一些新思路或展望。

钛合金成形技术与应用

摘要: 钛合金因其优异的性能成为高端装备零部件的优选结构材料,但钛合金属于难变形合金,成形加工困难,因此成形技术是产品加工的主要技术瓶颈。主要介绍了冷冲压成形技术、超塑成形技术、旋压成形技术、热推制成形技术、热模锻成形技术的特点,以及利用这些技术制备的不同形状、规格及品种的钛合金复杂零部件。指出了钛合金成形技术亟需解决的问题: 提高加工效率,降低生产成本。传统加工成形工艺与大数据人工智能及数值模拟预测等新技术深度融合,将是钛合金成形技术的发展方向。

高性能低成本钛合金生产应用现状

摘要:钛合金作为一种性能优异的新型稀有贵金属材料,广泛应用于航空航天、海洋工程、化工和新能源等领域。然而,高性能钛合金高昂的制备成本限制了其进一步发展。本文综述了国内外高性能、低成本钛合金的生产应用现状,并探索了未来高性能低成本钛合金的发展趋势,为实现低成本制备高性能钛合金指明了方向。

激光增材连接TC4-DT钛合金的组织及力学性能

摘要:采用激光增材连接技术对“X”型坡口TC4-DT钛合金锻件进行连接,利用OM 和SEM 对连接后TC4-DT钛合金基材、热影响区和连接区三个区域的宏微观组织形貌进行表征分析;采用维氏硬度计测量三个区域的显微硬度;采用万能试验机和摆锤冲击仪对不同取样类型的试样进行室温拉伸和冲击实验。关键词:激光增材连接;TC4-DT钛合金;显微组织;力学性能

机械表面处理铜合金研究现状

摘要:铜合金具有良好的导电性和导热性,进一步提升铜合金力学性能可扩展其应用领域。通过机械表面处理在铜合金内构筑梯度纳米晶结构能在无合金元素添加的条件下,大幅提升铜合金强度-塑性匹配、抗疲劳等性能,具有工程应用潜力。本文首先综述了国内外制备梯度纳米晶结构铜合金常用的机械表面处理技术;其次,分析了机械表面处理对铜合金强度-塑性匹配性、疲劳性能和耐腐蚀性能的影响,并系统阐述了梯度纳米晶结构铜合金组织稳定性的调控方法;最后,总结了机械表面处理铜合金研究领域的发展趋势及面临的挑战。

铝板带短流程生产工艺及发展趋势

摘要:对比了铸轧、扁锭热轧、连铸连轧3种生产工艺,其中连铸连轧属于短流程工艺; 对Hazelett、Micromill两种工艺进行详细介绍; 指出在解决产品表面质量、生产工艺等问题后,连铸连轧工艺是未来铝加工的发展趋势之一。

高强铝合金搅拌摩擦类增材制造研究进展

摘要:增材制造技术作为传统材料制备与加工方式的有效补充,有望满足先进制造领域对大尺寸、高性能构件短周期制备的新需求。基于能量束的熔化增材制造在使用商业高强铝合金制备大构件时难以避免凝固缺陷,导致所制备构件的材料力学性能下降。搅拌摩擦类增材制造技术避免了凝固缺陷,增材构件致密、组织均匀、晶粒细小、织构较弱,提升了增材构件材料的综合力学性能。本文对搅拌摩擦类增材制造技术在制备高强铝合金方面的研究与应用进展展开综述,分析了搅拌摩擦类增材制造技术面临的挑战及发展趋势,为相关领域的研究提供有益参考。

高性能Cu-Ni-Si系合金研究现状及发展趋势

摘要:先进铜基材料具有广阔的市场及良好的发展前景。相比于Cu-Be, Cu-Fe-P, Cu-Cr等合金而言,Cu-Ni-Si系合金具有高强度、较高的导电率、良好的抗高温软化、抗应力松弛性能及低廉的价格等优点,广泛应用于机械制造、航空航天、 交通运输、电子和电气工程等工业领域。本文首先介绍了Cu-Ni-Si系合金的发展现状,并从产品性能及产业化方面论述了国内外存在的差异。该合金发展趋势主要是朝着先进高强高导弹性铜合金方向发展,核心挑战是在提升强度的同时保持甚至提高导电性能,并且由于服役环境的复杂化及服役时间的延长,对于材料服役性能的可靠稳定性也提出了更为严苛的要求。最后从成分设计、加工及形变热处理工艺、 时效析出行为、服役性能等方面综述了Cu-Ni-Si系合金的研究现状,并针对目前该材料存在的不足,展望了高强度高导电铜合金的未来发展趋势。

铜基-碳纤维刹车片摩擦材料的制备及性能

摘要:以弥散铜为基体,镀铜碳纤维为增强润滑相,通过冷压烧结制备出铜基碳纤维刹车片材料。采用扫描电子显微镜观察了铜基刹车片材料的显微组织、拉伸断口及磨损形貌,并对材料的硬度、抗拉强度、摩擦因数及磨损量进行了测试分析。结果表明:碳纤维在基体中分布均匀,与基体结合良好;碳纤维的添加能提高铜基刹车片材料的硬度和抗拉强度,降低摩擦因数,提高材料的耐磨性,试验得出最佳的碳纤维质量分数为0.5%~0.7%。