十八辊轧机轧制高强薄规格带钢斜纹浪产生机理与控制技术

摘要:十八辊单机架轧机在轧制高强薄规格带钢时极易出现斜纹浪缺陷,分析认为斜纹浪产生的机理为带钢存在一定的切应力和不均匀的张应力,使带钢在轧制过程中产生不均匀塑性变形而导致。为解决斜纹浪板形问题,运用有限元ABAQUS软件建立了十八辊轧机轧制过程三维弹塑性仿真模型,分析了中间辊弯辊、轴向横移等手段的板形调控能力。结果表明:随着带钢宽度的增加,十八辊轧机中间辊弯辊、轴向横移对承载辊缝二次凸度、四次凸度调控功效逐渐增大,中间辊轴向横移调控功效要优于常规冷连轧机,而中间辊弯辊调控功效较常规冷连轧机要弱,十八辊轧机对承载辊缝四次凸度的调节能力明显高于常规冷连轧机,但对二次凸度的调节能力要弱于常规冷连轧机;当带钢发生跑偏时,轧机两侧出现轧制力偏差,且带钢跑偏量对十八辊轧机两侧轧制力差值的影响大于常规冷轧机。因此,相对于常规冷连轧,十八辊单机架轧机更容易产生斜纹浪板形缺陷。针对十八辊轧机生产带钢斜纹浪问题,提出减少末道次轧制力F(F<5MN),提高末道次前、后张力(提高30%)的措施,实现了斜纹浪缺陷的有效控制。

因瓦合金薄板组织演化及力学性能研究

摘要:针对因瓦合金传统制备工艺存在成材率低、生产效率低等问题,提出了薄带连铸—冷轧—退火的新制备工艺。利用光学显微镜、EBSD、EPMA及SEM研究了新制备工艺下因瓦合金薄板的组织演化,并测试了其力学性能。结果表明:薄带连铸因瓦合金铸带坯未出现表面裂纹、晶间氧化及Ni元素宏观偏析,微观组织由粗大的柱状奥氏体晶粒组成;利用新制备工艺,获得了厚度0.5mm及0.7mm的因瓦合金退火板,组织中含有大量退火孪晶,退火板屈服强度在251~281MPa范围内,抗拉强度在420~445MPa范围内,断后伸长率超过30%,拉伸断口均为典型韧性断裂形貌,与传统制备工艺下的退火板力学性能相当。

厚板生产技术的发展、现状及展望

摘要:梳理了我国厚板生产的发展历史,将我国厚板生产发展划分为起步期、蓄势期、发展期、成熟期、优化期5个阶段,从轧机规格、装备水平、产能规模等方面对各阶段特点进行了分析;阐述了热送热装、加热炉、轧机、矫直机等厚板生产关键工艺及装备的技术进步和发展;论述了特殊船舶用钢、海洋工程用钢等厚板典型产品的开发、应用和发展;展望了我国厚板生产及研发的发展方向并提出了建议。

热轧工艺对超薄规格冷轧IF钢织构及成形性能的影响

摘要:为了研究铁素体轧制和奥氏体轧制两种不同热轧工艺对超薄规格冷轧IF钢组织、织构和成形性能的影响,采用金相显微镜和XRD衍射仪分别观察和检测了两种热轧工艺下热轧、冷轧、退火带钢微观组织和宏观织构,采用EBSD检测了退火带钢的表面微观织构,采用拉伸试验机分别检测了退火带钢沿轧向、45°方向和横向的力学性能。结果表明:相比奥氏体轧制工艺,铁素体轧制工艺下退火带钢γ织构更强,主要织构组元{111}<110>、{111}<112>强度差异更小,相应r值提高0.45,△r值。降低0.10;铁素体轧制工艺下冷轧带钢位错、亚晶界等晶体缺陷密度更大,且形成的α织构更强,退火过程中具备<110>//ND取向的晶粒优先形核,且在生长过程中吞并邻近低取向差的{118}<110>、{557}<110>等其他取向晶粒,从而导致退火板形成更强的{111}织构。

热轧无缝钢管智能工厂建设关键技术与应用

摘要:无缝钢管广泛应用于化工、石油、海洋、地质及军工等各领域,是国防和经济建设的重要基础原材料。长期以来,热轧无缝钢管生产过程中存在无法按支跟踪、关键检测信息缺失、数据资源利用不足等问题,导致在多品种、小批量生产中质量稳定性和一致性提升困难、人员劳动效率低下,迫切需要通过新一代信息技术实现生产技术与产品质量改进。介绍了基于物理逻辑、深度学习与AI标识的热轧无缝钢管逐支跟踪系统、工艺质量智能管控系统和全工序远程智能集控系统等技术开发应用情况,实现了无缝钢管高效集约生产和精益化管控。应用实绩表明:无缝钢管智能工厂的成功实施使得产能提升20%,优化人员比例48%,能介消耗降低7%,质量修磨降级率降低50%,经济和社会效益显著,并为长材智能工厂的建设提供了参考。

海上风塔用钢国内外研究现状及发展趋势

摘要:我国海岸线长达18万km,海上风能资源技术开发潜力巨大。近年来,在“双碳”的大背景下,我国风电行业政策利好不断,海上风电装机容量在电网中所占的比重快速上升,海上风塔用钢需求增长态势明显。随着海上风电进一步向集群化、大型化和深海化发展,如何开发出与之适配的低成本、综合性能优良的海上风塔用钢已成领域内亟待解决的关键性问题。介绍了国内外海上风塔用钢的标准、分类及性能要求,并对其化学成分设计和生产工艺方面的研究现状及发展趋势进行了综述。

板带热连轧高精度非对称控制技术的研发及应用

摘要:在板带热连轧智能工厂的建设中,轧钢车间的“无人驾驶”理念深受推崇,而基于先进检测与智能控制技术的智能装备系统,是轧钢主流程远程、少人无人化集控的基础和前提。通过安装粗轧轧件镰刀弯、翘扣头及精轧轧件跑偏智能装备系统,对板带热连轧运行过程中的非对称因素进行高精度追踪和实时智能化管控,实现了对轧件侧弯、楔形、跑偏等非对称因素的粗精轧协同控制,助力板带热轧智能工厂的建设。其中,粗轧轧件运行非对称测控系统包括粗轧轧件镰刀弯测控系统和翘扣头测控系统;精轧轧件运行非对称测控系统包括精轧机架间轧件跑偏在线检测和自动控制系统。应用实绩表明:基于智能装备的板带热连轧轧件运行非对称测控系统在减员、产量提升、成材率提升、节能降耗等方面效果明显,为板带热轧智能工厂的稳定、高效、高质量运行奠定坚实基础。

优特钢长材开坯生产工艺技术及其应用实践

摘要:优特钢长材生产技术的进步、产品品质的提升和市场需求的扩大,促进了开坯生产工艺的复兴与发展。讨论了开坯生产的坯料选择及准备、加热、轧制、冷却以及在线与离线精整工艺,介绍了开坯生产线的主要布置型式、典型工程以及系列化牌坊式开坯轧机、无牌坊短应力线轧机的选型要求。提出了单机架往复式、半连轧布置可作为专业化开坯线的首选工艺布置方式,为优特钢长材开坯生产线的工程设计、生产应用提供参考。

钢/铝/镁/铝/钢复合板组织与性能研究

摘要:随着汽车行业对轻量化和安全性要求的不断提高,采用钢/铝/镁/铝/钢复合板替代纯钢板,既可以达到减重的效果,又可以利用复合板的性能优势满足汽车用钢的强度要求。利用轧制工艺成功制备了钢/铝/镁/铝/钢5层复合板,通过光学显微镜、扫描电子显微镜、拉伸试验机,研究了轧制温度(400、450、500℃)对复合板界面组织、界面结合强度、拉伸性能和断裂机理的影响。结果表明:在轧制压下率为45%、400~500 ℃轧制温度范围内制备的复合板均可达到良好的结合效果,其中钢/铝界面呈平直线,铝/镁界面呈波浪线且随着轧制温度的升高起伏程度增大;随着轧制温度的升高,镁层晶粒逐渐发生动态再结晶并长大,铝层硅化物析出含量增多,钢/铝界面结合强度提高,铝/镁界面结合强度、复合板的抗拉强度和断后伸长率呈现出先升高后降低的变化趋势。400、450、500℃轧制温度下复合板铝/镁界面结合强度、抗拉强度和断后伸长率分别为77.54、88.63、81.14 MPa,310、324、278 MPa,39.9%、40.9%、22.3%,在450 ℃轧制温度下复合板的综合力学性能最优。

柔性轧制及其实现方法

摘要:介绍了柔性轧制的概念,将柔性轧制分为几何形状尺寸的柔性调控和产品性能柔性控制两种类型,分别介绍了两类柔性轧制的实现方法和相关技术。在形状尺寸柔性调控中,利用对轧辊辊缝及孔型的灵活控制,获得具有形状尺寸优化、负载能力增强的产品,满足一些特定需求,实现节材减重、节能减排;在轧制中对组织性能进行柔性控制方面,介绍了从早期一钢多能、一钢多用,到用同一种化学成分生产不同晶粒尺寸的产品,获得不同力学性能的状况,再到近期提出的UniSteel概念,以单一化学成分取代已有的繁多汽车用钢品种;最后对柔性轧制技术的发展进行了展望。