电池壳用高精度极薄冷轧钢带开发生产实践

摘要:根据电池壳用高精度极薄冷轧钢带的技术要求,对六辊HC 轧机的工作辊、中间辊辊系,乳化液系统,电气控制系统等进行升级改造;同时试验分析了退火温度及退火保温时间对产品微观组织、物理性能的影响,优化了退火及平整轧制力等工艺参数,开发了电池壳用高精度极薄冷轧钢带。实物质量检验表明,产品厚度偏差0~-0.01mm,板形平整、表面质量达到高级精度(FC)要求,屈服强度180~240MPa,抗拉强度330~390MPa,断后伸长率≥35%,冲压无开裂,各项指标满足标准及客户要求。

高强度不锈钢应用及研究进展

摘要:高强度不锈钢因其优异的综合性能及成熟的生产工艺,已成为航空、航天、海洋、石化工程等高端制造业领域的重要材料。系统回溯高强度不锈钢的发展及应用历程,总结此类钢的强韧化机理及最新研究进展,并详细梳理了影响该钢的氢陷阱行为及氢脆抗力的主要因素。结合现有研究成果,提出了采用多种类纳米级第二相颗粒复合析出强化突破高强度不锈钢强韧性匹配极限的思路;通过调控钢中析出相及逆转变奥氏体的交互析出行为,提高后者的机械、化学稳定性,使其作为钢中裂纹及可扩散氢的双重“陷阱”,从而提高钢的裂纹及氢脆抗力。最后指出未来新型高强度不锈钢的研发须重点关注以材料基因算法、人工神经网络、机器学习为代表的“人工智能化”合金设计理念。

碳纤维粉末改性铁基粉末冶金材料的组织与性能

摘要:采用还原 Fe 粉作为基体,分别添加长度约为 20μm 的微米短碳纤维(micron short carbon fibers, MCsf)和粒径为 1~4μm 的碳纤维颗粒(carbon fiber particles, Cfp)作为弥散相,采用压制−真空烧结制备 MCsf/Fe 和Cfp/Fe 粉末冶金材料,并与平均粒度 10 μm 的天然石墨(natural graphite, NG)为原料制备的 NG/Fe 粉末冶金材料进行对比。研究微米短碳纤维、碳纤维颗粒对粉末冶金材料显微组织、物理性能、力学性能和尺寸变化的影响。结果表明:碳纤维颗粒的活性远高于石墨和脱胶短碳纤维(degummed short carbon fibers, DCsf),空气气氛下800 ℃的最大质量损失率为石墨的3.75倍,脱胶短碳纤维的16.6倍。与 NG/Fe 和 MCsf/Fe 粉末冶金材料相比,Cfp/Fe 粉末冶金材料在烧结过程中的尺寸稳定性大幅提高,最大径向膨胀率和收缩率分别为0.39%和 0.14%,且强度和韧性最高,密度、抗弯强度、剪切强度和抗拉强度分别为6.91 g/cm3、736.9 MPa、205.7 MPa和334.8 MPa,伸长率达到 10.5%,材料的断裂模式由脆性沿晶断裂向完全韧窝型断裂转变。

无镀铜焊丝的特性及推广应用

摘要:从无镀铜焊丝的特性出发,阐述了无镀铜焊丝的烟尘量、电弧稳定性、抗锈性、焊丝外观及飞溅等内容,说明了无镀铜焊丝与镀铜焊丝在本质上的差异,以及在生产应用中需要注意的相关事项,为焊接同仁对无镀铜焊丝与镀铜焊丝的选择与应用提供借鉴。

激光刻痕对高磁感取向硅钢板耐蚀性的影响

摘要: 通过扫描电镜(SEM)和能谱仪(EDS)对激光刻痕后高磁感取向硅钢表面进行形貌观察和化学成分分析,并采用硫酸铜点滴试验、加速腐蚀试验(交变湿热试验及动态接触湿热试验)研究了激光刻痕对取向硅钢耐蚀性的影响。结果发现:激光刻痕对取向硅钢表面涂层厚度均匀性和平整性造成破坏,使取向硅钢基体出现裸露的情况,耐蚀性大幅降低。

锌铝镁镀层钢板的研究进展

摘要:介绍了近年来锌铝镁镀层钢板的发展情况,综述了其镀层结构特点及性能的研究进展,探讨了锌铝镁镀层钢板的应用前景。锌铝镁镀层钢板具有相似的镀层结构,其表面具有纳米特征。锌铝镁镀层钢板的耐蚀性是镀锌钢板的4倍,且具有自愈性,优良的耐膜下腐蚀性、成形性和焊接性能,是一种新型长寿命、能源资源节约型钢铁材料。

新一代高技术宽带钢轧机电工钢高精度板形控制研究进展

摘要: 自由规程轧制是实现柔性一体化生产组织和追求最大生产效率的必要途径, 板形控制一直是制约电工钢自由规程轧制的瓶颈难题。阐述了国际上对新一代高技术宽带钢轧机机型的不断探索与板形控制技术特征及其日趋复杂化的进展研究;基于热模拟与数学模型构建了电工钢完整轧制过程的高温本构关系, 建立了电工钢热塑性变形过程集成仿真模型, 原创构建了电工钢自由规程轧制完整过程中可同时控制不均匀变形和不均匀磨损的非对称自补偿轧制作用机制、提出了一种由数据与机理融合驱动的电工钢自由规程轧制形性协同的非对称自补偿轧制轧辊辊形、液压窜辊和液压弯辊的高精度融合控制方法。结合生产实际提出了新一代高技术热连轧自由规程轧制过程的全板形融合π机型与板形控制创新技术, 突破性实现了高效低成本对新一代高技术宽带钢轧机自由规程轧制的高精度板形控制, 为现场工业生产提供了理论基础和创新实现路径。最后展望了宽幅电工钢高精度板形控制的创新发展趋势。

氢冶金场景下规模化固态氢储运技术的开发及应用

摘要:钢铁行业的氢冶金是未来氢能规模化应用的主要场景之一,炼铁炉利用氢气作为还原剂,替代传统的碳基还原过程,从而减少温室气体排放。在氢冶金过程中,建立高效可靠的氢储运产业链是成败的关键。简述了氢冶金背景和国内外氢气储存领域的研究进展和应用现状,对各种储存技术进行了简明分析。结合氢冶金工厂的特点,提出“气固相分离式固态氢储运技术”的方案,理论上可实现经济、安全、长距离、面向工业应用的大规模氢储运。未来可通过工程化手段实现大宗含氢物料的制备和存储运输,并与冶金或化工工厂的原料工艺流程实现有效衔接,对上游合金资源产业和可再生能源制氢产业也有重要推动作用。

重大装备用高品质轴承用钢的发展及其质量控制

摘要:随着汽车、高铁、精密机床、风电等重大装备的应用与建设,对轴承提出了高品质、长寿命和高可靠性的要求。除了轴承结构设计、制造精度外,轴承用钢对轴承产品的质量具有至关重要的影响。基于目前高端轴承应用需求,分析了高铁、风电、盾构机等重大装备领域轴承需求现状和性能要求,介绍了国内外轴承钢的发展方向和钢种开发情况,并讨论了轴承钢质量控制原理和思路。轴承钢产品质量控制的目标可归纳为纯净化、精细化和均匀化。其中冶金和凝固过程通过窄成分控制、低有害元素含量、碳化物液析、元素偏析带状、结晶组织缺陷、夹杂物控制等以获取洁净钢。后续轧制锻造工序通过控轧控冷实现组织的均匀化和精细化控制,以满足后续热处理等工序的加工性要求。

高Cr马氏体耐热钢的协同强化机制及形变热处理应用

摘要: 高Cr (9%~12%,质量分数)马氏体耐热钢因其较高的热导率、较低的热膨胀系数以及优异的高温蠕变强度等优点而被认为是超超临界火电机组关键设备升级改造的主选材料。然而,服役过程中高Cr 马氏体耐热钢高温蠕变强度的不断弱化严重影响了其安全可靠性。以往提升高Cr 马氏体耐热钢高温蠕变强度的主要手段是通过合金成分优化设计来促进沉淀相弥散析出,但单一析出强化效应对蠕变强度的提升效果非常有限。近年来,位错-沉淀相-界面协同强化效应在提升高Cr 马氏体耐热钢高温蠕变性能方面表现出显著效果。其原理是通过形变热处理引入位错来促进多种沉淀相弥散析出,同时通过控制相变来细化板条组织,增强位错、沉淀相及界面3 者之间的交互作用,从而实现多类蠕变强化效应的协同提升。本文总结了高Cr马氏体耐热钢的协同强化机制及形变热处理组织调控,从高温蠕变强度提升角度回顾了合金成分的优化历程,阐述了热处理过程中的相变行为及高温组织退化机理,对比分析了单一析出强化效应及形变热处理后位错-沉淀相-界面协同强化效应对其高温蠕变强度的影响规律,并基于焊接接头蠕变失效行为探索了形变热处理对焊接热影响区的组织调控机制,以期为高Cr马氏体耐热钢及其他火电机组用沉淀型强化耐热钢的材料设计及工程应用提供指导。