增材制造高强钢的研究进展及应用

摘要:高强钢具有高的强度及韧性,在航空航天等领域具有重要地位。大型关键重载构件存在锻造难度大、对热加工要求高等问题,限制了其进一步发展和应用。增材制造技术可以实现金属构件的高性能精确快速成形,为高强度钢的制造提供了一条新途径。本文介绍了增材制造高强度钢的成形特性,综述了增材制造高强度钢的组织演变规律和力学性能特征。研究表明,工艺参数对增材制造高强度钢的致密度、熔覆层宽度和高度均影响较大,进而影响成形件内部质量。热累积会使层间组织变粗大,同时使不同部位的组织发生不同的固态相变,使高强钢的组织更加复杂;热处理可以显著提高增材制造高强度钢的综合力学性能;最后对高强度钢增材制造过程中需要进一步深入研究的问题进行了探讨和展望。

我国无取向电工钢技术的进步与发展

摘要:改革开放以来,我国无取向电工钢技术进步为钢铁、电工行业发展及国民经济增长做出了重要贡献。从无取向电工钢生产的全流程进行分析,结合生产技术、装备升级,系统阐述了冶炼、热轧、冷轧、热处理、涂层等关键工序的生产工艺进步;从织构控制、磁性能提升、硅钢强化技术等角度,深入分析了支撑生产工艺进步的相关材料学技术机理;围绕“高效、高端、绿色、智能”的发展目标,描绘了无取向硅钢的技术发展趋势。我国无取向电工钢已形成技术创新—产品进步—技术机理研究互相支撑的良好发展格局,预期未来我国无取向电工钢的技术水平和产品实物质量将继续呈现引领全球的发展态势。

太钢冷轧无取向硅钢绝缘涂层的发展及技术进步

摘要:简述了国内和太钢冷轧无取向硅钢绝缘涂层的发展历史及现状,介绍了太钢目前不同类型涂层的主要性能、应用领域,及近些年来涂层发展过程中生产技术的进步,主要包括C5薄环保涂层自主开发、C6极厚涂层国产化、自粘结涂层工艺开发,并提出了绝缘涂层下一步的发展方向。

热轧带钢高效与智能轧制新技术研究进展及应用

摘要:伴随着钢铁工业朝着产品高端化、高质化和生产高效化、绿色化、智能化方向的快速发展,热轧带钢高效与智能轧制技术取得了巨大进步,涌现出诸多创新成果。综述了近年来热轧带钢生产先进控制模型和专用轧制技术以及钢铁智能工厂建设的新进展。重点关注了加热炉智能化过程控制模型、辊系-轧件快速计算模型、力学性能预报模型、硅钢同板差控制技术、高强钢高次浪形控制技术、高强钢轧后冷却板形控制技术、常规热轧产线高效轧制技术、无头轧制产线边降控制技术、薄带铸轧产线板形调控技术、质量管控大数据平台、物料多维信息感知技术、热轧多区域集控技术、热轧多业务协同技术等内容。这些技术的不断创新与应用,锻造了热轧带钢生产新质生产力,提升了热轧带钢产品竞争力,推动了钢铁工业的整体技术进步。

310S和316L不锈钢在超临界二氧化碳环境中的均匀腐蚀行为

摘要: 在600 ℃、20 MPa超临界二氧化碳(S-CO2)环境中研究了310S和316L奥氏体不锈钢的腐蚀行为。在静态高压釜中对两种不锈钢进行了500 h的均匀腐蚀试验,采用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等观察和分析了试样表面氧化膜的形貌、成分及结构。结果表明:310S不锈钢的耐蚀性优于316L不锈钢,腐蚀500 h后两种不锈钢的质量增量分别为6.82 mg/dm2 和35.25 mg/dm2;310S不锈钢表面氧化膜厚约1 μm,外层为Fe-Cr-Ni尖晶石,内层为Cr2O3,结构致密具有保护性;316L不锈钢表面氧化膜厚约5 μm,外层为Fe3O4,内层为Fe-Cr-Ni尖晶石,结构疏松不具有保护性。造成两种不锈钢腐蚀行为差异的原因是其铬含量不同。

0.20mm耐热型取向硅钢的微观组织、磁性能及应用

摘要:耐热型低损耗取向硅钢是制造超高能效立体卷铁心变压器的理想材料。采用OM,SEM 和EBSD 技术研究0.20mm耐热型激光刻痕和机械刻痕取向硅钢的微观组织及刻痕线晶粒取向特征,采用任意波形磁场激励测量系统研究两种耐热型取向硅钢去应力退火后在正弦及复杂工况下的电磁性能,基于MagNet有限元软件开展10kV/400kVA超高能效变压器铁心和绕组建模、仿真分析及实验验证。结果表明:耐热型激光刻痕和机械刻痕取向硅钢磁畴细化机制完全不同,前者依赖于在原始厘米级大尺寸Goss晶粒表面形成由金属氧化物填充的平行沟槽,后者通过在基体表层形成等距离分布的直径40~50μm 随机取向晶粒,其与原始晶粒之间的大角度晶界及亚晶界可细化磁畴降损;在850℃退火0~8h过程中,两种耐热型取向硅钢样品的铁损均先下降、后小幅上升或趋于平稳,谐波和直流偏磁工况下的损耗变化规律基本相当;在完成铁心截面级数优化、磁场和损耗仿真的基础上,研制的国产耐热型激光刻痕取向硅钢10kV/400kVA立体卷铁心变压器空载损耗、负载损耗分别较国标GB20052—2020 能效1 级变压器限定值大幅降低了17.3%和7.9%,具有超高能效特征。

电池壳用高精度极薄冷轧钢带开发生产实践

摘要:根据电池壳用高精度极薄冷轧钢带的技术要求,对六辊HC 轧机的工作辊、中间辊辊系,乳化液系统,电气控制系统等进行升级改造;同时试验分析了退火温度及退火保温时间对产品微观组织、物理性能的影响,优化了退火及平整轧制力等工艺参数,开发了电池壳用高精度极薄冷轧钢带。实物质量检验表明,产品厚度偏差0~-0.01mm,板形平整、表面质量达到高级精度(FC)要求,屈服强度180~240MPa,抗拉强度330~390MPa,断后伸长率≥35%,冲压无开裂,各项指标满足标准及客户要求。

含不锈钢金属丝的功能纺织品开发动态

摘要:简述了不锈钢金属丝的性能,并根据其在纺织品上的使用方法和用途,分为不锈钢微丝和不锈钢纤维。对不锈钢金属丝的发展及其抗静电、防辐射、形状记忆、过滤、吸声等功能性纺织品的研究进展进行了详细的介绍,并阐述了其功能纺织品的发展趋势。

高强度不锈钢应用及研究进展

摘要:高强度不锈钢因其优异的综合性能及成熟的生产工艺,已成为航空、航天、海洋、石化工程等高端制造业领域的重要材料。系统回溯高强度不锈钢的发展及应用历程,总结此类钢的强韧化机理及最新研究进展,并详细梳理了影响该钢的氢陷阱行为及氢脆抗力的主要因素。结合现有研究成果,提出了采用多种类纳米级第二相颗粒复合析出强化突破高强度不锈钢强韧性匹配极限的思路;通过调控钢中析出相及逆转变奥氏体的交互析出行为,提高后者的机械、化学稳定性,使其作为钢中裂纹及可扩散氢的双重“陷阱”,从而提高钢的裂纹及氢脆抗力。最后指出未来新型高强度不锈钢的研发须重点关注以材料基因算法、人工神经网络、机器学习为代表的“人工智能化”合金设计理念。

碳纤维粉末改性铁基粉末冶金材料的组织与性能

摘要:采用还原 Fe 粉作为基体,分别添加长度约为 20μm 的微米短碳纤维(micron short carbon fibers, MCsf)和粒径为 1~4μm 的碳纤维颗粒(carbon fiber particles, Cfp)作为弥散相,采用压制−真空烧结制备 MCsf/Fe 和Cfp/Fe 粉末冶金材料,并与平均粒度 10 μm 的天然石墨(natural graphite, NG)为原料制备的 NG/Fe 粉末冶金材料进行对比。研究微米短碳纤维、碳纤维颗粒对粉末冶金材料显微组织、物理性能、力学性能和尺寸变化的影响。结果表明:碳纤维颗粒的活性远高于石墨和脱胶短碳纤维(degummed short carbon fibers, DCsf),空气气氛下800 ℃的最大质量损失率为石墨的3.75倍,脱胶短碳纤维的16.6倍。与 NG/Fe 和 MCsf/Fe 粉末冶金材料相比,Cfp/Fe 粉末冶金材料在烧结过程中的尺寸稳定性大幅提高,最大径向膨胀率和收缩率分别为0.39%和 0.14%,且强度和韧性最高,密度、抗弯强度、剪切强度和抗拉强度分别为6.91 g/cm3、736.9 MPa、205.7 MPa和334.8 MPa,伸长率达到 10.5%,材料的断裂模式由脆性沿晶断裂向完全韧窝型断裂转变。