飞秒激光全划切超薄碳化硅基片

摘要:目的为实现超薄碳化硅基片全划切,需在加工出窄线宽(小于25 μm)的切割槽的同时保证基片的强度。方法使用波长为1 030 nm 的红外飞秒激光对碳化硅基片进行全划切加工,通过扫描电子显微镜和光学显微镜分析脉冲重复频率、脉冲能量、切割速度和扫描次数对切口宽度、深度以及断面形貌的影响,采用能谱仪对不同脉冲能量下的划切断面进行微区元素分析,采用激光共聚焦显微镜测量划切断面粗糙度,以及采用电子万能实验机测试划切样品的抗弯强度。结果划切断面的元素主要有Si、C、O 3 种,O 元素富集在断面的上下边缘位置。SiO2 颗粒喷溅重沉积影响断面微纳结构。断面的粗糙度随脉冲能量的增强而上升,基片强度反而下降。在激光脉冲能量为3.08 μJ、脉冲重复频率为610 kHz、切割速度为4 mm/s、切割12 次的条件下,可以加工出宽度为15 μm、深度高于100 μm 的良好切割槽,断面粗糙度为296 nm,基片抗弯强度为364 MPa。结论切割槽宽度和深度与脉冲重复频率、脉冲能量、切割速度和扫描次数有关。O 元素的分布说明存在SiO2 堆积在断面上下边缘部分的现象。使用小脉冲能量激光进行划切,可以减少SiO2 颗粒喷溅重沉积,从而使断面出现大量熔块状结构,得到粗糙度较低的断面形貌。断面粗糙度降低,意味着划切断面存在的微裂纹等缺陷减少,从而使强度上升。本试验最终采用较优激光划切工艺参数,实现了飞秒激光全划切超薄SiC 基片,槽宽仅为15 μm。由于短脉宽小脉冲能量高重复频率激光的作用以及激光辐射下SiC 材料的相分离机制,基片划切断面烧蚀形貌良好,且抗弯强度较好。

超薄晶圆减薄工艺研究

摘要:主要研究了超薄晶圆减薄工艺和设备。从设备结构、晶圆传输、晶圆加工工艺、晶圆测量等方面,介绍了先进封装用减薄机如何解决超薄晶圆易碎问题,以及设备的国内外现状。

基于电化学的可穿戴汗液传感器的研究进展

摘要:汗液包含着丰富的生理相关信息,通过对这些信息的分析检测或可达到对人体健康实时监测的目的。基于电化学的柔性可穿戴汗液传感器具有设备简单、小型化、便于集成、灵敏度高、响应快、多通道检测等优点,近年来得到了快速发展。便携式的可穿戴汗液传感器可广泛应用于生理信息采集、运动监测、疾病预防等生物医学领域,具有广阔的市场应用前景。基于可穿戴电化学汗液传感器的工作原理,本文主要从制备技术、电极材料和集液装置三个方面评述了最近的研究工作和进展,并对可穿戴式汗液传感器在个性化医疗保健发展中的机遇和挑战进行了展望。

基于硅外延片用石墨基座的温度均匀性研究

摘 要:通过对电磁感应加热的硅外延化学气相沉积反应腔室建立理论分析模型,结合工程实验对比,研究了不同石墨材料和不同基座结构对基座表面温度均匀性的影响。结果显示,在工程中,选择合适的石墨材料、设计合适的基座结构对硅外延片电阻率均匀性有着很大的影响,但在提升产品质量的同时也要平衡经济效益。

高端精密超薄均热板研究现状及发展趋势

摘要:超薄均热板广泛应用于移动电子产品,随着5G 产品的普及,电子产品功率器件的热流密度越来越大,超薄均热板成了移动电子产品导热的关键器件。综述了当前超薄均热板的发展现状,以及超薄均热板研究过程中遇到的问题。还论述了未来超薄均热板的发展方向是轻质材料和新的制造工艺应用,轻质材料超薄均热板在未来将取代铜质均热板,届时移动电子产品将迎来散热器的升级换代。

碳点基电致发光器件研究进展

摘要:荧光碳点(CDs)具有原料广泛、无毒无污染、发光颜色可调、低成本和生物相容性等优异特点,在发光领域具有广阔的应用前景。近年来,基于CDs的电致发光器件已经取得了不错的成就。本文总结了基于CDs的电致发光器件的最新进展,并且重点论述了合成高效CDs和调控器件结构以获得高性能器件的可行性策略。此外,结合CDs在电致发光器件应用中的发展现状以及未来需求分析,本文对实现高性能CDs基电致发光器件进行了展望。

碳化硅单晶加工对晶片表面质量的影响

摘要:碳化硅(4H-SiC)晶片加工是制备高品质衬底晶圆的关键工艺,衬底晶圆的表面质量直接影响外延薄膜以及后续器件的性能。本研究通过对4H-SiC晶片经线切割、磨削、研磨、抛光等不同加工工序后对应的表面形貌、粗糙度、机械性质和晶体质量的分析,发现晶片加工通过逐步去除线切割引入的表面损伤层,提高了晶片表面质量。4H-SiC晶片C面和Si面机械性质存在各向异性,C面材料韧性相对较差,加工过程中发生脆性断裂的程度更大,导致C面材料去除速率较快,表面形貌和粗糙度相对较差。

纳米发电机应用: 新型高压电源技术

摘要:摩擦电纳米发电机(TENG), 作为一种新兴的能量收集技术, 在过去十年中取得了快速进展. 除了微纳能源和自驱动传感等应用, 高电压和低电流的输出特性促进TENGs作为新型高压电源开创了一系列卓有成效的应用.对于TENGs, 实现数百甚至数千伏的电压输出相对容易, 而电流输出可保持在几微安的量级, 这为开发安全的高压应用带来了机遇, 如等离子体激发、流体和颗粒操控、空气净化、杀菌消毒等. 此综述介绍了TENGs产生电压的基本理论, 并总结了将TENGs电压提升至数万伏的策略, 还详细评述了这些高压TENGs(HV-TENGs)在物理、化学和生物领域的应用. 最后, 讨论了TE-TENGs将来可能面临的机遇和挑战.

柔性导电高分子复合材料在应变传感器中的应用

摘要:柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器) 和传感机理( 隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构( 微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构) 。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。

II~VI族半导体纳米晶体的手性研究前沿

摘要:近年来, 手性II~VI族半导体纳米晶体因其独特的光电性能和手性诱导电子自旋选择性特点而受到广泛关注. 手性是一种对称性破缺现象, 可通过以下几种方式诱导纳米晶体的手性: (1) 连接手性配体; (2) 形成手性晶格; (3) 形成手性形貌; (4) 手性组装排列; (5) 多级手性及手性放大. 在手性诱导过程中, 由于更小尺寸的纳米晶体——量子点的量子限域效应, 其物理化学性质可随尺寸、形貌、组成和晶型进行调控, 可以使其在紫外-可见-近红外光区域内表现出手性消光和圆偏振发光等特性. 此外, 几何参数如形状各向异性、晶格失配和表面不对称性在调节手性纳米结构的手性响应中也扮演着关键角色. 因此, II~VI族手性半导体纳米材料在纳米光子学应用中的根本挑战是对纳米尺度的立体合成的完全控制, 并从实验和理论两方面阐明不同维度手性的发生机制. 本综述介绍了过去十几年来手性半导体纳米晶体, 从控制合成到手性起源探索和潜在应用方面的最新研究进展, 并提出了新的材料合成策略和理论改进论点, 为新兴的跨学科领域如圆偏振发光、自旋电子学和基于手性的医疗诊断纳米器件应用等提供新思路.