用于柔性电子器件的有机/无机薄膜封装技术研究进展

摘要:有机/无机薄膜封装技术被广泛用于有机发光二极管(OLED)、量子点显示及有机光伏等领域,是一种新型的柔性封装技术。综述近年来有机/无机薄膜封装技术的发展趋势,首先概述了传统硬质盖板封装方式与薄膜封装方式的发展及其优缺点。其次,系统地总结了有机/无机薄膜的制备方法,如原子层沉积、等离子体化学气相沉积等,详细阐述了不同制备方法的原理及其应用。再次,讨论了薄膜的微观缺陷、内应力,以及材料界面工程对有机/无机薄膜封装性能的影响,分析总结了有机/无机封装薄膜制备的技术要点,如采用基底表面预处理、引入中性层、调节层间应力等方式获得优质的封装薄膜。最后,探究了有机/无机封装薄膜的内在阻隔机理,提出气体在有机/无机薄膜中的传输方式以努森扩散为主,并总结了提高薄膜封装的策略,即延长气体扩散路径、“主动”引入阻隔基团及薄膜表面改性。提出了未来薄膜封装技术面临的问题,拟为柔性电子器件封装技术的发展提供一定参考。

三维异构集成的发展与挑战

摘要:三维异构集成技术带动着半导体技术的变革,用封装技术上的创新来突破制程工艺逼近极限带来的限制,是未来半导体行业内的关键技术。三维异构集成技术中的关键技术包括实现信号传输和互连的硅通孔/玻璃通孔技术、再布线层技术以及微凸点技术,不同关键技术相互融合、共同助力三维异构集成技术的发展。芯片间高效且可靠的通信互联推动着三维异构集成技术的发展,现阶段并行互联接口应用更为广泛。异构集成互联接口本质上并无优劣之分,应以是否满足应用需求作为判断的唯一标准。详述了三维异构集成技术在光电集成芯片及封装天线方面的最新进展。总结了目前三维异构集成发展所面临的协同设计挑战,从芯片封装设计和协同建模仿真等方面进行了概述。建议未来将机器学习、数字孪生等技术与三维异构集成封装相结合,注重系统级优化以及协同设计的发展,实现更加高效的平台预测。

碳基CMOS集成电路技术: 发展现状与未来挑战

摘要:碳纳米管凭借其优良的电学性质、准一维尺寸以及稳定的结构成为后摩尔时代最理想的半导体材料。目前碳基电子学已经取得很大进展, 例如可以在4寸晶圆上得到高半导体纯度(超过99.9999%)的密排(100~200CNTs/μm)阵列碳纳米管, 晶体管栅长可以缩至5 nm且具备超越硅基的性能, 世界首个碳基现代微处理器RV16XNANO已经问世。本文综述了近年来碳纳米管在材料、器件和集成电路方面的发展, 以及未来可能在光电、传感、显示和射频等领域的应用前景. 最后, 文章列举了碳基CMOS集成电路推向产业化的过程中面临的一系列挑战, 并对碳基技术发展路线做了进一步展望。

柔性可穿戴电子应变传感器的研究进展

摘要:柔性可穿戴电子应变传感器因可承受力学形变、质轻及实时监测等优点,是柔性电子领域的研究热点之一,本文从材料选择、器件结构、传感原理、疲劳失效及数值模拟等方面进行了综述。应变传感器的力电转化效率与寿命从本质上取决于导电网络演变和功能层/基底界面,需综合衡量材料的导电性和浸润性等属性,提高其传感性能。功能层结构分为螺旋、褶皱、编织、多孔及仿生五类。传感原理包括压阻、电容及压电式,其中压阻式分为断开机制、裂纹扩展及量子隧道效应。疲劳特性研究表明,交变应力会导致功能层屈曲、开裂及脱落。利用官能团改性、构建三维自交联阵列、引入拓扑结构及形成有序纳米晶畴可改善器件服役行为。疲劳失效模型归纳为拉、弯及扭转形式,在此基础上讨论了模型建立原则、力学本构关系及寿命预测精度。结合数值模拟和应变传递理论构建等效导电路径模型可揭示传感过程中的形态变化、应变分布及界面作用,实现对外界刺激的精准测量。下一步应从基底热力学稳定性、极端条件下服役行为、力电转换机制及穿戴舒适性等方面深入探究,为构建综合性能良好的传感器奠定基础。

面向大算力应用的芯粒集成技术

摘要:随着先进制程接近物理极限,摩尔定律已无法满足人工智能大算力需求。芯粒技术被公认为延续摩尔定律,提升芯片算力的最有效途径。针对芯粒技术研究热点,从集成芯片的应用与发展、典型芯粒封装技术、芯粒技术的挑战和机遇方面进行了系统性的梳理。详细列举了当前芯粒技术的应用成果,分析了2.5D、3D堆栈以及3D FO封装技术特点。

电阻式柔性触觉传感器的研究进展

摘要:电阻式柔性触觉传感器具有柔韧灵敏、简单可靠、检测范围广、易于集成化等特点,在触觉感知、人机交互、医疗健康等传感应用领域占据着极其重要的地位,具有广阔的应用前景。随着电阻式柔性触觉传感器的发展,其制备技术和结构设计愈加精密成熟,3D打印技术的应用以及各类微结构的设计使传感器柔韧性和灵敏性得到了极大的提高。然而,目前高性能电阻式柔性触觉传感器的制作工艺仍旧十分复杂,严重限制了其批量生产的能力。再加上电阻式柔性触觉传感器不能实现剪裁拼接、高效低耗等功能,因而无法满足人们对其大面积覆盖和高密度触觉感知的期望。此外,就性能而言,电阻式柔性触觉传感器也难以实现高柔与高敏的兼顾效果,在传感上仍有局限性。为了解决这些难点,众多国际学者在柔性衬底材料、导电敏感材料的选择,以及敏感单元、阵列结构的设计上进行了大量的研究,搭建电子皮肤触觉感知系统。如今,电阻式柔性触觉传感器已经朝着微型化、集成化、自愈合、自清洁、生物适应、生物降解、神经接口控制等方向发展,并在多功能传感上取得了卓越成果。本文首先介绍了电阻式柔性触觉传感器的检测原理和性能指标,然后从材料选择、结构设计和性能优化方面概述了电阻式柔性触觉传感器的研究现状和关键技术,讨论了其在触觉感知、人机交互、医疗健康等领域的相关应用,最后指出了目前电阻式柔性触觉传感器研究所存在的技术难题,并对其未来发展进行了展望。

磁性硅酸盐纳米材料在光催化降解有机污染物中的研究进展

摘要:光催化是去除水中难降解有机污染物的有效措施,因其高效的矿化能力而显示出巨大的潜力。然而,大多数光催化剂的实际应用受到其粉末形态的制约,使大规模应用成为一个难题。近年来,磁性硅酸盐复合材料在材料科学中由于其稳定和可回收的特性获得了越来越多的关注。本综述回顾了磁性硅酸盐复合材料作为光催化剂的研究现状,探讨了合成、修饰及其降解机制方面的最新进展。最后,对磁性硅酸盐复合材料的研究结果和未来的挑战进行了展望。

可拉伸高分子光电器件的研究进展

摘要:可拉伸高分子光电器件是一类基于共轭高分子的独特器件,具备在承受机械应变时仍能维持其光电性能的能力,在可穿戴电子、可拉伸显示、生物医学传感等领域展现出广阔的应用潜力. 近年来,国内外学者对器件与材料设计进行了大量的探索,为其性能提升和应用拓展奠定了坚实基础. 本文以外在弹性与本征弹性2 个维度为切入点,深入探讨器件形态设计、材料结构调控以及薄膜组分优化等策略,总结并评述其重要成果. 最后,指出未来需要关注的重点研究方向,以克服商业化过程中面临的多重挑战,并展望可拉伸高分子器件的不断进步能为有机电子领域注入新的活力.

宽禁带半导体碳化硅IGBT器件研究进展与前瞻

摘要:碳化硅(SiC)宽禁带半导体材料是目前电力电子领域发展最快的半导体材料之一。绝缘栅双极晶体管(IGBT)是全控型的复合器件,具有工作频率高、开关损耗低、电流密度大等优点,是高压大功率变换器中的关键器件之一。但SiC IGBT 存在导通电阻高、关断损耗大等缺点。针对上述挑战,对国内外现有的新型SiC IGBT 结构进行了总结。分析了现有的结构特点,结合新能源电力系统的发展趋势,对SiC IGBT的结构改进进行了归纳和展望。

电子束光刻设备发展现状及展望

摘要:电子束光刻设备在高精度掩模制备、原型器件开发、小批量生产以及基础研究中有着不可替代的作用。在国外高端电子束光刻设备禁运的条件下,中国迫切需要实现高端国产化设备的突破。介绍了电子束光刻设备发展历程,列举了当前活跃在科研和产业界的3种设备(高斯束、变形束、多束)的主要厂商及其最新设备性能,并概括了国产化电子束光刻设备发展现状。通过国内外电子束光刻设备性能的对比,总结了国产化研发需要解决的关键性难题。其中,着重介绍了高端高斯电子束光刻设备国产化需要面临的技术挑战:热场发射电子枪、高加速电压、高频图形发生器、极高精度的激光干涉仪检测技术及高精度电子束偏转补偿技术。