纳米发电机应用: 新型高压电源技术

摘要:摩擦电纳米发电机(TENG), 作为一种新兴的能量收集技术, 在过去十年中取得了快速进展. 除了微纳能源和自驱动传感等应用, 高电压和低电流的输出特性促进TENGs作为新型高压电源开创了一系列卓有成效的应用.对于TENGs, 实现数百甚至数千伏的电压输出相对容易, 而电流输出可保持在几微安的量级, 这为开发安全的高压应用带来了机遇, 如等离子体激发、流体和颗粒操控、空气净化、杀菌消毒等. 此综述介绍了TENGs产生电压的基本理论, 并总结了将TENGs电压提升至数万伏的策略, 还详细评述了这些高压TENGs(HV-TENGs)在物理、化学和生物领域的应用. 最后, 讨论了TE-TENGs将来可能面临的机遇和挑战.

柔性导电高分子复合材料在应变传感器中的应用

摘要:柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器) 和传感机理( 隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构( 微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构) 。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。

面向毫米波射频互联的超低弧金丝球焊工艺方法研究

摘要:引线键合工艺是实现毫米波射频(RF)组件互联的关键手段之一。随着毫米波子系统的快速发展,毫米波组件的工作频段越来越高,对射频通道互联金丝的拱高提出了新的要求。过高的引线弧度会使得系统驻波变大,严重影响电路的微波特性。球焊工艺由于引线热影响区的存在,难以满足射频互联中短跨距、低弧高的需求。采用弯折式超低弧弧形工艺,通过对25μm金丝热超声球焊成弧过程中各关键参数的优化试验,将热影响区折叠键合在第一焊点上,在保证引线强度的前提下,实现了300μm短跨距、80μm超低弧高的金丝互联,为球焊工艺在毫米波射频组件互联中的应用提供了实现思路。

面向6G的低时延高可靠边缘计算架构

摘要:移动边缘计算(MEC)是6G移动通信网络中连通通信与服务、实现万物智联的支撑技术。针对MEC系统的计算时延优化,提出横向多主机架构;为优化MEC系统的传输时延及解决多主机并行计算的掉队者问题,提出多连接主从多主机架构。以上均设计了完整的信令流。针对MEC系统的性能评估,搭建了基于开源库的多主机MEC仿真平台。实验表明,提出的横向多主机MEC架构可有效提高计算时延性能;提出的多连接主从多主机MEC架构有效缓解掉队者问题,提高传输时延性能;搭建的MEC仿真平台能够有效评估多主机架构的关键性能指标。

II~VI族半导体纳米晶体的手性研究前沿

摘要:近年来, 手性II~VI族半导体纳米晶体因其独特的光电性能和手性诱导电子自旋选择性特点而受到广泛关注. 手性是一种对称性破缺现象, 可通过以下几种方式诱导纳米晶体的手性: (1) 连接手性配体; (2) 形成手性晶格; (3) 形成手性形貌; (4) 手性组装排列; (5) 多级手性及手性放大. 在手性诱导过程中, 由于更小尺寸的纳米晶体——量子点的量子限域效应, 其物理化学性质可随尺寸、形貌、组成和晶型进行调控, 可以使其在紫外-可见-近红外光区域内表现出手性消光和圆偏振发光等特性. 此外, 几何参数如形状各向异性、晶格失配和表面不对称性在调节手性纳米结构的手性响应中也扮演着关键角色. 因此, II~VI族手性半导体纳米材料在纳米光子学应用中的根本挑战是对纳米尺度的立体合成的完全控制, 并从实验和理论两方面阐明不同维度手性的发生机制. 本综述介绍了过去十几年来手性半导体纳米晶体, 从控制合成到手性起源探索和潜在应用方面的最新研究进展, 并提出了新的材料合成策略和理论改进论点, 为新兴的跨学科领域如圆偏振发光、自旋电子学和基于手性的医疗诊断纳米器件应用等提供新思路.

微波等离子体化学气相沉积法制备大尺寸单晶金刚石的研究进展

摘要: 金刚石作为一种超宽禁带半导体,是下一代功率电子器件和光电子器件最有潜力的材料之一。然而,高品质、大面积(大于2 英寸)单晶衬底的制备仍是金刚石器件产业应用亟待解决的问题。介绍了目前受到广泛关注的微波等离子体化学气相沉积法(MPCVD)获得大尺寸金刚石单晶衬底的技术方案,即单颗金刚石生长、拼接生长以及异质外延生长。综述了大尺寸单晶金刚石外延生长及其在电子器件领域应用的研究进展。总结了大尺寸单晶金刚石制备过程中面临的挑战并提出了潜在的解决方案。

高性能存储芯片产业发展研究

摘要:高性能存储芯片堪称全球人工智能蓬勃发展的核心驱动力,不仅有力推动了信息技术产业不断迈进、显著提升电子设备性能、为服务器和数据中心的发展注入强劲动力,还极大促进了人工智能与机器学习、物联网、虚拟现实以及增强现实等新兴技术的崛起。本文全面系统地梳理了我国高性能存储芯片的发展需求,分析了高性能存储芯片的国际发展态势,总结了我国高性能存储芯片的发展现状,深入剖析了发展进程中所面临的问题与挑战,精准指出其带来的变革机遇,并提出以下针对性的对策建议:一是分层施策夯基础,变革策略求突破;二是传统新型两手抓,多条路线齐头并进;三是加速形成新技术布局,逐渐打破市场层垄断,期望能够加速我国高性能存储芯片的发展进程。

第三代宽禁带功率半导体及应用发展现状

摘要:近年来,以碳化硅和氮化镓为代表的第三代宽禁带功率半导体迅猛发展,已成为中国功率电子行业的研发和产业化应用的重点。抓住第三代宽禁带功率半导体的战略机遇期,实现半导体材料、器件、封装模块和系统开发的自主可控,对保障工业创新体系的可持续发展至关重要。在分析第三代宽禁带功率半导体重要战略意义的基础上,综述了其材料、器件研发和产业的发展现状,阐述了碳化硅及氮化镓器件在当前环境下的应用成果,剖析了第三代半导体行业存在的关键问题。建议在国家政策的进一步领导之下,发挥行业协会和产业联盟的桥梁和纽带作用,对衬底材料、外延材料、芯片与器件设计和制造工艺等产业链各环节进行整体支撑,引导各环节间实现资源共享、强强联合,上下游互相拉动和促进,形成一个布局合理、结构完整的产业链。

柔性电子材料与器件在可穿戴传感领域的发展现状、挑战与创新策略

摘要:可穿戴材料与器件正朝着柔性、轻薄、无感、智能化和可长期佩戴等方向发展,以满足人体生理心理等个性化需求。这一趋势为运动健康监测领域带来了革新,并得到了学术界和工业界的广泛关注。然而,在满足人体个性化发展需求的同时,可穿戴柔性材料与器件本身也面临着机械鲁棒性、信号稳定性、软硬接口连接和生物相容性等性能方面的挑战。因此,本文旨在从实际运动健康监测需求的角度出发,讨论构建可穿戴柔性材料与器件的材料、结构和制备工艺。同时,深入探讨了其在机械、电气和生物性能等方面所面临的主要挑战因素及其解决路径。最后,预测了未来可穿戴柔性电子材料与器件的发展方向,包括全柔性集成、机械鲁棒性的增强、信号解耦与识别的高精度化、监测的稳定性与灵敏度、快速响应性、超薄无感设计、多模态信号处理以及智能化自适应反馈等。

引线框架用铜带产品现状及研发进展

摘要: 文章综合论述了电子引线框架铜带产品的现状,分析了国内产品普遍存在的质量问题及解决方向,指出了新一代及新型框架铜带的研发进展。