多材料体系三维集成光波导器件

摘要:随着高速光通信、智能光计算和灵敏光探测等领域的快速发展,光子集成系统正成为重要发展趋势,其对于单元器件性能、系统集成度和可拓展性提出了更高的要求。多材料体系三维集成技术突破了传统单一材料体系的器件性能限制以及二维加工与集成技术的面积与集成度限制,有望实现高速率、高效率、高密度以及低功耗的新型光电集成系统。本文围绕三维堆叠技术和飞秒激光加工技术这两类主要的多材料体系三维集成光波导技术,首先介绍了基于层间耦合器的三维光学耦合技术与三维集成光波导器件,然后介绍了基于三维堆叠技术的光电融合集成器件(光发射机/接收机、波分复用收发器、光互连模块),进一步介绍了基于飞秒激光直写技术的三维集成光波导器件(偏振复用器、模式复用器、扇入/扇出器件、拓扑量子器件)。这些三维集成技术为提升系统性能、提高系统集成度以及降低系统功耗提供了有效的解决方案,从而在先进光通信和光信号处理等领域具有广泛的应用前景。

柔性电化学传感器的材料选择研究进展

摘要:电化学传感器作为传统传感器的一种,具有效率高、响应性好和灵敏度高等优点。而柔性电化学传感器具有这些特点的同时,凭借其优异的柔韧性、拉伸性、可折叠性和电化学稳定性,被广泛应用于医疗卫生、环境监测和食品安全等方面。此外,该类传感器还具有方便携带、成本较低、灵敏度高和选择性好等特点。本文立足于柔性传感器活性材料的选择,从无机材料、有机材料、酶和天然材料入手,通过分析与总结近几年的研究成果,介绍材料的选择对电化学传感器性能的影响,重点阐述了不同材料在柔性电化学传感器方面的制备及应用,表明柔性电化学传感器在生产生活中发挥着不可替代的作用。最后对现阶段柔性传感器的研究应用存在的问题与挑战进行总结,并对其未来发展方向进行展望。

激光融合制造及在柔性微纳传感器的应用(特邀)

摘要:柔性微纳传感器的新兴发展对先进制造技术提出了更高要求。其中,激光融合制造充分集成激光增材、等材、减材加工形式,凭借高精度、非接触、机理丰富、灵活可控、高效环保、多材料兼容等特点突破了传统制造在多任务、多线程、多功能复合加工中的局限,通过激光与物质相互作用实现跨尺度“控形”与“控性”,为各类柔性微纳传感器的结构-材料-功能一体化制造开辟了新途径。本文首先分析激光增材、等材与减材制造的技术特点与典型目标材料,展示激光融合制造的技术优势,接着针对近年来激光融合制造在柔性物理、化学、电生理与多模态微纳传感器中的典型应用展开讨论,最后对该技术面临的挑战以及未来发展趋势进行了总结与展望,通过多学科交叉互融,开辟柔性微纳传感器制造新路径,拓展激光制造技术的应用场景。

芯片用金刚石增强金属基复合材料研究进展

摘要:随着电子设备集成化程度越来越高,对高导热封装材料的需求也越来越大,金刚石增强金属基复合材料凭借其高导热性能成为研究焦点。然而,由于金刚石颗粒与金属基体之间的不润湿特性,具有高导热性的金刚石增强金属基复合材料难以制备。文中综述了金刚石增强金属基复合材料的研究进展,包括界面改性、工艺参数优化和复合材料制备方法,并指出了金刚石增强金属基复合材料目前存在的问题和今后的研究方向。

煤基富氧多孔炭纳米片的制备及其超级电容器性能

摘要:多孔炭电极的表面改性与优化是实现超级电容器优异性能的关键。本文以煤化学工业的固体副产物为碳源,利用二维层状双氢氧化物(MgAl-LDH)的刚性约束作用耦合KOH 活化工艺成功制备了二维富氧多孔炭纳米材料(OPCN)。系统研究了炭化温度对OPCN 样品微观结构和表面特性的影响,通过SEM、TEM、氮气吸脱附测试以及元素分析等表征手段对炭材料的结构/组成和表面特性进行分析表明,经700 °C 炭化获得的炭材料样品(OPCN-700)具有较高的氧质量分数(24.4%)和大的比表面积(2 388 m2 g−1),并表现出良好的润湿性。同时,OPCN-700 样品丰富的微孔和二维纳米片结构为电解质离子提供了有效的储存和传输途径。作为超级电容器的电极材料,在电流密度为0.5 A g−1 时,其比电容高达382 F g−1,并呈现出优异的倍率性能和循环稳定性。该技术策略为富氧原子掺杂二维多孔炭材料的可控制备与水系储能器件的设计构建提供了新思路。

电容式柔性压力传感器的性能优化原理及研究进展

摘要:作为可穿戴电子器件的重要分支,柔性压力传感器在人机交互、健康监测等方面具有广阔的应用前景。随着新型材料与新的器件制备策略的不断开发,柔性压力传感器的力学与电学性能不断被优化以适应不同的应用需求。相较于其他传感器,电容式柔性压力传感器具有灵敏度高、功耗低、响应快的优势。电容式柔性压力传感器的性能优化主要通过改变器件的结构参数来实现,如电极有效正对面积、电极间距、有效介电常数等。主要方法策略包括新型纳米材料的应用、新型微结构设计和新型复合材料的开发。主要优化原理有四种:(1) 通过改变电极表面粗糙度来改变电极有效正对面积;(2)在电极或介电层中引入空气层以降低弹性模量;(3)在介电层中引入空气或高介电常数材料来改变有效介电常数;(4)通过复合材料在介电层中形成微电容以改变总体电容变化。在电容式柔性压力传感器的性能优化研究中存在一个共性问题,即高灵敏度与宽检测范围之间总是存在一种制约关系。在一定压力范围内,尤其是低压范围,灵敏度提升往往会使器件较易达到压缩饱和而使检测范围有限,即线性度较差。近年来,研究者们着眼于高灵敏度与宽检测范围之间的制约问题,对介电层的梯度结构设计及混合响应机制进行探索,取得了丰硕的成果,在保证高灵敏度的前提下大幅提升了器件的检测范围。然而,迟滞、稳定性及阵列优化仍是电容式柔性压力传感器面向实际应用时存在的问题。本文系统归纳了电容式柔性压力传感器的性能优化原理,分别对电极和介电层的结构设计与材料优化方法进行了介绍,分析了电容式柔性压力传感器在性能优化研究中面临的难题,并进行了展望,以期为设计和制备满足应用需求条件的高性能柔性压力传感器提供参考。

金属网格柔性透明导电薄膜研究进展

摘要:随着柔性电子器件的发展,柔性显示器、柔性太阳能电池、柔性传感器等产品已经逐步从实验室走向市场。柔性透明导电薄膜作为柔性光电器件不可或缺的重要组成部分,今后其需求量只会不断增加。目前的光电子器件逐渐向大尺寸、轻薄、柔性、可拉伸、低成本等方面发展。氧化铟锡(In-diumtion oxide,ITO)是目前使用最广泛的透明导电薄膜,但ITO制备工艺复杂,具有脆性,且铟是稀有金属,储量少,价格昂贵。因此,研制可替代ITO的高性能柔性透明导电薄膜越来越迫切。目前已有研究人员研制出多种可替代ITO的柔性透明导电薄膜,其中基于金属网格的柔性透明导电薄膜是替代ITO的有力竞争者。金属网格柔性透明导电薄膜展示了极好的光电性能和机械灵活性。它最吸引人的地方在于可以独立改变金属网格的线宽和间距,从而在调节薄膜方阻和透光率方面表现出更好的权衡性。目前,已有大量的研究人员研制出可与ITO 媲美的金属网格柔性透明导电薄膜。多数研究者通过光刻技术制作出母版,再结合化学镀或电沉积技术进行导电薄膜制作。以光刻技术为基础制备的柔性透明导电薄膜性能良好,但光刻工艺复杂而且设备昂贵。还有研究人员通过其他技术进行研究,如印刷增材制造技术、静电纺丝技术、光子烧结、模板法等,制备的柔性透明导电薄膜性能良好。其中基于印刷增材制造技术制备的柔性透明导电薄膜已经在触摸屏领域实现产业化,有望进一步发展。本文综述了金属网格柔性透明导电薄膜的研究进展及在光电器件中的应用,包括有机太阳能电池、有机发光二极管等,具体讨论了金属网格透明导电薄膜的基本特性、光电性能、制造技术和器件应用,并点明了其制备方法的优劣性,以期为后续的研究提供参考。

光敏聚酰亚胺:低温固化设计策略

摘要:扇出型晶圆级封装(FOWLP)由于在成本、尺寸、输入/输出密度等方面有更优化的解决方案而备受关注。随着封装厚度的薄型化,作为其中再布线层介电材料的光敏聚酰亚胺也面临着新的要求: 更低介电常数、更低热膨胀系数、更低残余应力、更低固化温度等。FOWLP面临的问题主要是晶圆翘曲,减少封装工艺热预算可有效降低封装中金属材料与介电材料之间因热力学性质差异所导致的应力集中。由此,光敏聚酰亚胺需首要解决的即是传统体系在固化温度方面的限制(>300℃) 。本文从聚酰亚胺合成过程角度综述了近些年来在降低光敏聚酰亚胺固化温度方面的研究进展及发展现状,介绍了基于聚酰胺酸、聚异酰亚胺、可溶性聚酰亚胺低温固化体系的优劣势,最后展望了低温固化体系的进一步发展趋势。

人工智能与计算化学: 电子电镀表界面研究的新视角

摘要:电子电镀是以芯片为代表的高端电子制造业核心技术之一, 其过程耦合了宏观多场作用下的物质传输与微观界面电化学过程, 且受动力学影响。如何利用计算化学的方法来研究其中的电沉积是一个挑战。电极与电镀液构成的界面是电镀过程重要的反应场所, 明确电子电镀表界面的双电层结构以及电沉积作用机理能够加快镀液配方的研发效率。本文重点介绍适用于电子电镀表界面机理研究的各类计算方法, 包括分子动力学模拟、数值仿真和数据驱动方法, 以启发读者充分利用人工智能的技术优势, 将适用于各种研究尺度的计算化学方法积极应用到电子电镀表界面基础研究中。

柔性可穿戴传感与智能识别技术研究进展

摘要:柔性可穿戴传感器件能与人体稳定集成, 具有多生理参数和运动参数连续动态测量能力, 可在健康监测、运动监控、精准医疗、人机交互等领域发挥重要作用。柔性可穿戴传感器件与人工智能技术的结合, 充分展示了利用连续动态多参数信号测量的进行疾病、动作、语音等判定与识别的优势。本文通过介绍柔性可穿戴器件在物理信号、化学信号和图像信号传感中应用, 从硬件平台和数据处理分析技术两方面介绍了柔性可穿戴器件与人工智能结合的方法和进展, 展示了基于柔性可穿戴传感系统的智能识别技术, 分析了柔性可穿戴传感与智能识别技术在柔性化集成、数据传输、能源供应等方面面临的诸多挑战, 并对未来发展趋势进行了展望。