硅转接板制造与集成技术综述

摘要:集成电路制程发展放缓,具有高密度、高集成度以及高速互连优势的先进封装技术成为提升芯片性能的关键。硅转接板可实现三维方向的最短互连以及芯片间的高速互连,是高算力和人工智能应用的主流封装技术。从硅转接板设计、制造以及2.5D/3D集成等方面,系统阐述了硅转接板技术的发展现状和技术难点,并对相关关键工艺技术进行详细介绍。

Ar原子与石墨片层相互作用的分子动力学研究

摘要:在EUV(extreme ultraviolet)光刻机中,多层膜反射镜在暴露于高能EUV 辐射下会产生碳(C)沉积等污染,严重降低反射镜的反射率以至于降低光刻机的使用寿命。而EUV光对背景气体电离产生的EUV诱导等离子体对沉积碳有着较好的清洁作用。采用分子动力学方法对EUV诱导氩(Ar)等离子体与石墨状沉积碳的相互作用过程进行模拟,从Ar在石墨表面的吸附到大量Ar原子对石墨表面累计辐照进行研究。结果表明,Ar在石墨表面Hollow位点具有最稳定的吸附结构,当Ar在石墨表面扩散时倾向穿过C—C键中间的Bridge点向相邻Hollow点扩散。单个独立载能Ar在入射到石墨表面时会产生反射、吸附和扩散3 种现象,这主要与Ar原子入射到石墨的位点有关。而当大量Ar累计辐照石墨时,根据入射Ar 数量和能量的增多会产生多种缺陷并不断发展,使石墨层的强度大大减弱并产生物理溅射效果。

柔性导电高分子复合材料在应变传感器中的应用

摘要:柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器) 和传感机理( 隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构( 微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构) 。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。

碳化硅真空纳米电子器件技术分析

摘要:新兴的真空纳米电子器件兼具固态器件集成电路和传统真空电子器件的优势。但和硅器件同工艺、同片集成的现状,限制了其在恶劣环境的应用。使用宽禁带半导体碳化硅材料制备真空纳米电子器件,可在耐辐射基础上兼具抗高温特性,使该器件具备良好的综合优势。文章分析了硅器件及集成电路发展中面临的问题,回顾了真空纳米电子器件的发展历史,介绍了碳化硅材料的相对优势以及SiC基真空纳米电子器件研究现状,并对该器件发展及应用前景进行了分析。

高逼真3D光场显示关键技术

摘要:详细总结了高逼真3D光场显示的关键技术及其基本原理,包括光场显示系统构建、光场显示控光技术和光场显示图像编码等,并详细阐述了它们在3D 光场显示技术中的作用。为使高逼真3D光场显示技术真正地得到推广应用,必须全面考虑各种因素,包括完善显示系统的构建、控光技术的优化和编码技术的改进。希望该综述能够为3D光场显示技术的研究和发展提供有益参考。

植物智能电子器件: 从生长监测到功能调控

摘要:植物作为人类赖以生存的主要食物来源、生态环境的调解者以及多种原材料的提供者, 其生长过程的实时监测与生理功能的精准调控, 正成为推动植物科学研究与智慧植物系统管理的重要方向. 近年来, 随着材料科学与器件技术的不断革新, 尤其是在可穿戴与可植入信号监测、电控调节等领域的突破, 围绕“智能植物电子学”的新兴研究逐渐兴起, 正逐步取代传统的植物信号采集方法, 拓展植物研究的边界. 本综述旨在系统阐述智能植物生物电子器件的核心概念, 梳理其所涉及材料与器件的设计理念、发展历程、代表性进展及关键技术策略.首先, 我们介绍植物电子器件的基本原理及其主要功能类别. 随后, 从环境信号感知、生理状态监测到生长行为调控等多个维度, 系统总结了植物生物电子材料与器件的最新研究成果, 并归纳出三类主要研究策略. 最后, 结合有机电子与碳基材料的发展趋势, 探讨了该领域面临的机遇与挑战, 旨在为未来智慧植物学的构建与发展提供新思路与理论支持.

芯片制造中的化学镀技术研究进展

摘要:芯片制造中大量使用物理气相沉积、化学气相沉积、电镀、热压键合等技术来实现芯片导电互连. 与这些技术相比, 化学镀因具有均镀保形能力强、工艺条件温和、设备成本低、操作简单等优点, 被人们期望应用于芯片制造中, 从而在近年来得到大量的研究. 本综述首先简介了芯片制造中导电互连包括芯片内互连、芯片3D 封装硅通孔(TSV)、重布线层、凸点、键合、封装载板孔金属化等制程中传统制造技术与化学镀技术的对比, 说明了化学镀用于芯片制造中的优势; 然后总结了芯片化学镀的原理与种类、接枝与活化前处理方法和关键材料; 并详细介绍了芯片内互连和TSV互连化学镀阻挡层、种子层、互连孔填充、化学镀凸点、再布线层、封装载板孔互连种子层以及凸点间键合的研究进展; 且讨论了化学镀液组成及作用, 超级化学镀填孔添加剂及机理等. 最后对化学镀技术未来应用于新一代芯片制造中进行了展望.

大尺寸金刚石晶圆复制技术研究进展

摘要:半导体技术的发展离不开大尺寸晶圆的高效制备。在半导体领域,晶圆复制可以通过同质外延生长后进行切割或者基于异质衬底进行异质外延来实现,从而批量生产。金刚石作为新型超宽禁带半导体材料,在电真空器件、高频高功率固态电子器件方面具有良好的应用前景。而由于金刚石材料具有极高硬度,晶圆复制也面临诸多问题。传统的激光切割方法虽然可以实现对超硬特性金刚石进行加工,但其较高的加工损耗已经无法满足大尺寸晶圆的制备需求,呕需开发损耗小、效率高的金刚石晶圆复制技术。文章介绍了目前常见的半导体晶圆复制技术,总结了金刚石复制技术的研究进展及现阶段发展水平,并对未来大尺寸金刚石晶圆复制技术的发展方向进行了分析与展望。

基于神经网络的多朝向LED可见光定位

摘要:为改善基于传统定位算法的多朝向LED 可见光定位(MD-VLP)系统的定位性能,提出一种基于接收信号强度比率值(RSSR)的神经网络方法。此方法采用单个光电检测器(PD)接收来自同一位置的多个不同朝向的LED光强,继而将RSSR 代入人工神经网络模型来估计平面坐标。实验结果表明,所提方法在PD处于水平时平均定位误差为2.96 cm,在PD倾斜15°时平均定位误差为5.51 cm,其性能相比于基于RSSR的最小二乘法有显著提高。此外,为了验证所提方法的普适性,仿真分析了两种非朗伯辐射光源构成的多朝向LED集成灯具的定位性能,仿真结果显示,所提方法分别获得了3.70 cm和6.22 cm的平均定位误差,并支持PD适度倾斜。进一步地,设计了一款采用多朝向非朗伯辐射面状光源的VLP集成灯具,实验结果表明,所提方法在PD处于水平或适度倾斜状态时仍能有效工作。

基于有机半导体的感-存-算自旋器件研究

摘要:利用电子自旋属性进行信息存储、传输与处理, 是未来构建智能感知系统的全新途径. 在自旋电子学领域, 有机半导体材料凭借其极弱的自旋弛豫效应和超长的自旋寿命, 成为实现室温自旋信息应用的理想材料. 有机半导体独特的光电磁特性赋予自旋器件对外界刺激的高度敏感响应能力, 开发了系列功能性有机自旋器件, 为构建智能化的自旋感知系统提供了重要的研究基础. 本文综述了有机半导体材料在自旋输运、自旋界面以及光电磁特性方面的研究进展; 重点探讨了基于此类材料的自旋传感器件、存储器件及有望实现自旋运算的光控自旋态器件的最新成果, 并分析了当前研究中面临的挑战, 展望了面向智能信息系统的功能性有机自旋器件的未来发展方向.