高速柔性气动减速器关键技术研究进展

摘要:柔性气动减速技术是航天器高速进入地外天体或再入地球大气安全着陆的关键核心技术,随着中国载人航天和深空探测等重大任务的持续推进,航天器更快的进入速度和更重的载荷对于高速柔性气动减速器的需求日益迫切。而高速柔性气动减速器的力学模型兼具强非线性和强耦合特性,且涉及研究领域极广,如需考虑钝性和多孔结构的气动特性、非线性结构动力学、可压缩湍流、结构气动热及其相互耦合等问题。因此,开展高速柔性气动减速器的基础理论和关键技术研究具有极大的难度和复杂性但意义重大。首先对高速柔性气动减速器进行分类;然后分析梳理了高速柔性气动减速技术的技术内涵,并系统地回顾和综述了其关键技术的发展历史和研究进展;最后,对高速柔性气动减速器关键技术的未来发展方向和亟需解决的关键问题进行了总结展望。

气动推力矢量喷管研究近况和发展趋势

摘要:推力矢量技术是未来飞行器特别是高机动飞行器的关键技术,其核心部件是推力矢量喷管。气动推力矢量喷管通过流动控制实现喷管出口气流偏转,具有革命性优势,并可进一步衍生出短距/垂直起降、反推等多种功能以适应更丰富的应用场景。通过数十年的研究,气动推力矢量喷管逐步经历了概念设想、初步探索、机理研究和工程实验等阶段,其技术成熟度不断提高,正朝着初步工程应用发展。着重介绍了近年来具有代表性的国内外研究人员在多种气动推力矢量喷管上的研究成果,探讨了气动推力矢量喷管的发展趋势和未来研究重点,指出需要进一步加强内部流场的机理研究,攻克包含多目标、多学科综合优化和飞行器、发动机与气动推力矢量喷管的整机匹配等在内的关键技术,推进工程应用,以期为气动推力矢量喷管技术的应用提供参考。

极地海冰观测卫星的发展现状与展望

摘要:极地海冰以其对全球气候变化的重要影响,使得准确获取海冰多要素信息成为极区观测的核心任务。卫星是极地海冰监测的主要技术手段,已被国内外广泛应用于极地海冰的观测。阐明当前国内外极地海冰卫星遥感的现状,对于未来极区海冰新遥感传感器的研制具有重要的指导意义。首先梳理了目前国内外具备极地海冰信息获取能力且在轨运行的卫星信息,在此基础上,综述了基于卫星数据在极地海冰观测中的主要应用进展。最后,指出现有全球对地观测体系对极地海冰信息观测的不足,并提出了我国后续极地海冰观测的发展建议。

超润滑薄膜研究进展及在航天领域的应用展望

摘要:固体润滑薄膜以其非挥发性和宽温域适应性,成为空间机构极端环境长效运行的核心保障。近年来,超润滑技术实现从基础研究到宏观尺度的突破,虽未达理论零摩擦,但其在航天领域的技术优势显著。本文聚焦航天领域特殊工况,系统分析过渡金属二硫化物(TMDs)和氢化类金刚石碳(H-DLC)薄膜的超润滑机制,阐明实现宏观尺度超润滑的关键科学问题与技术挑战。TMDs 需满足原子级洁净界面、范德华主导机制及非公度接触三大本征条件,通过超晶格异质界面工程、多层梯度薄膜构筑等创新策略,使MoS2 在宏观尺度下也具备超润滑特性;H-DLC 真空超润滑依赖碳原子氢钝化效应,通过氢含量调控、元素掺杂及多层复合结构设计解决氢脱附引发的失效问题。建议分阶段推进超润滑固体薄膜技术在航天工程中的应用,在技术发展初期阶段,首先选择一次性机构(压紧释放机构、展开机构),逐步拓展至长寿命连续运行机构,通过持续迭代优化,推动超润滑技术成为新一代航天器的核心支撑技术。

航天用镍基高温合金粉末床熔融技术研究进展

摘要:采用激光粉末床熔融技术(LPBF)制造镍基高温合金具有较大的生产潜力,在航空航天领域有着广泛的应用,因此这一技术受到了高度关注。近年来,为了更好地了解LPBF-镍基高温合金的性能和使用极限,相关学者对其开展了大量的研究工作。本文基于近年来多项LPBF-镍基高温合金的研究,阐述了该领域的研究目标和重要发现,并列举了LPBF 镍基高温合金在航天工业中的具体应用。总体分析了工艺参数和热处理对镍基高温合金及其复合材料增材构件组织及力学性能的影响,以及LPBF过程中常用的建模方法及研究进展。最后,对LPBF-镍基高温合金的未来发展方向提出了展望。

航空薄壁零件切削加工技术研究进展

摘要:航空薄壁零件的加工精度和效率直接影响飞机的性能和可靠性。本文系统综述了航空薄壁零件切削加工技术,包括夹具技术、加工变形预测与控制方法、颤振预测与控制技术,以及数字孪生技术应用等多个方面。夹具技术详细研究了各种夹具的操作模式、结构特点、功能与应用等方面。变形预测与控制分析了薄壁件加工变形原因,并介绍了相关的控制技术和方法。颤振预测与控制探讨了切削过程稳定性分析技术和颤振控制技术,包括在线监测与识别、主动与被动控制技术和方法。数字孪生技术的应用部分介绍了该技术在薄壁件加工中的实际应用情况。通过对航空薄壁零件加工技术的系统综述,全面深入地介绍了相关内容,可为学者们的研究提供参考与指导。

航空发动机中介圆柱滚子轴承抗倾斜能力分析及优化设计

摘要:针对某航空发动机中介圆柱滚子轴承由于内、外圈倾斜而导致滚子与内圈滚道出现剥落的问题,提出采用内、外圈许用倾斜角评价圆柱滚子轴承的抗倾斜能力,基于该方法分析得到轴承许用倾斜角随着滚子凸度和内圈滚道有效宽度增大而增大,故提出将滚子凸度增大到原结构的3.2倍,内圈滚道有效宽度比原结构增加6%的改进措施,改进后的轴承许用倾斜角提升到优化前的4~9倍,仿真和试验结果表明优化后的轴承能够避免滚子与内圈滚道一端出现应力集中。

起落架用高速火焰喷涂WC涂层覆盖高强钢海水环境腐蚀与开裂行为

摘要:为探究水陆两栖飞机用起落架材料海洋环境适应性及其失效机制。通过在热轧300M 高强钢表面制备高速火焰喷涂WC 涂层,使用电化学测试、盐雾实验、拉伸实验、疲劳实验,并通过SEM,EDS,XRD 以及CLSM 表征,开展其在人工海水环境中的腐蚀行为研究。研究结果表明,在pH 值为8. 2 的人工海水环境中,WC 涂层发生明显的钝化,具有较好的耐蚀性,这与在碱性环境下涂层中的Co 发生钝化有关。长周期电化学阻抗结果表明,浸泡28 天后,涂层耐蚀性上升,这与表面黏结剂形成的氧化物有关。与300M 基材相比,喷涂后的材料抗拉强度略微升高,这与涂层内部的残余应力释放有关,其在人工海水中的开裂主要受阳极溶解过程控制。随着预腐蚀时间的增加,材料的疲劳寿命发生明显降低,在预腐蚀过程中,环境中的腐蚀性介质进入涂层内部,增加了缺陷的数量,使得涂层提前发生失效,导致材料断裂敏感性增加。WC 涂层有较好的耐蚀性,拉伸过程中残余应力的释放使材料的抗拉强度略微升,经过预腐蚀后涂层提前发生失效,使得材料疲劳寿命降低。

新一代航空用高Co-Ni钢的摩擦磨损行为

摘要:高Co-Ni齿轮钢广泛应用于航空航天、交通运输、工业设备和机械装备等领域的关键构件,其摩擦磨损行为的研究对于服役寿命的优化具有重要意义。通过正交实验确定淬火温度(A因素)、摩擦时间(B因素)及载荷(C因素)三种因素对试件摩擦磨损性能的影响大小。结果表明,影响试样磨损体积的最大影响因素是淬火温度。原因是随着淬火温度的升高,试样内部均匀化增强,硬度降低,摩擦产生的剥落与开裂减少。同时由于塑性变形,亚表层内会发生应变硬化,残余奥氏体在塑性变形下转变为马氏体(相变诱发塑性效应),降低了材料的体积损失。

生物质多环碳氢高密度航空燃料合成

摘要:高密度航空燃料是一类为提高航空航天飞行器的飞行性能而人工合成的液体碳氢化合物。与常规燃料相比,它具有高密度和高体积燃烧热值等优点,能有效提高飞行器的航程、航速、载荷等飞行性能。随着全球化石资源的日益减少和生态环境的持续恶化,以生物质为原料合成高密度航空燃料成为研究热点。本文综述了近年来由生物质平台分子及其衍生物合成多环碳氢高密度航空燃料的研究进展,主要介绍了高密度燃料合成中常见的构筑多环结构的C-C 键偶联方法,包括羟醛缩合反应、烷基化反应、羟醛缩合-氢化脱氧-分子内烷基化反应、Diels-Alder 反应、光照2+2 环加成反应、重排反应;讨论了催化剂对C-C 键偶联反应的影响因素;总结了大量的多环碳氢高密度航空燃料的性能,讨论了分子结构和组成对燃料性能的影响,取代基的适当引入、多组分燃料的形成是提高燃料综合性能的主要方法,以平台分子合成石油基型高密度燃料也是提高生物质高密度航空燃料综合性能的一种策略;最后,展望了生物质多环碳氢高密度航空燃料合成的新趋势。