适用于航空热管理的相变材料研究进展

摘要:航空领域的热管理至关重要,良好的热管理可以提高设备能效,提升系统的稳定性和可靠性。本文阐述了航空领域进行热管理应用的需求,分析了利用相变材料辅助热管理的优势,指明了当前航空领域热管理所需相变材料热物理性能面临的挑战。本文梳理了通过多种方法对相变材料热性能进行优化的方案,重点讨论了分子设计、共晶混合、分散添加剂和封装技术等用于制备复合相变材料的策略及其性能提升效果。同时,介绍了相变材料常用的换热性能测试和仿真方法。现有研究存在的主要问题是相变材料的分子设计和部分共晶混合缺乏系统化理论或模型指导。未来,结合机器学习、量子化学计算和分子动力学模拟等方法有望得到更理想的设计方法。通过综述相变材料在航空热管理领域应用的研究进展,期望为相关材料的设计、制备和性能验证提供指导和启示。

热障涂层金属粘结层制备与研究进展

摘要:热障涂层是航空发动机和地面燃气轮机提升工作效率、延长服役寿命的关键技术和重要手段。粘结层作为热障涂层系统中的重要组成部分,一方面可缓解陶瓷层和高温合金基体间的热不匹配应力,提高热障涂层系统热稳定性;另一方面,高温下通过生长一层致密且连续的Al2O3层,保护合金基体免受氧化和腐蚀。因此,粘结层性能直接决定了热障涂层系统的服役寿命。本文系统总结了传统粘结层材料、制备方法及其优缺点等方面的研究进展,同时介绍了新型高熵合金粘结层体系,重点关注其成分设计、结构及抗氧化性能等方面的研究现状及不足。最后,对粘结层材料的研究方向进行了展望。

镀铜石墨烯增强钛基复合材料的组织及性能研究

摘要:本实验通过超声搅拌加球磨的方式制备了镀铜石墨烯(GNPs)增强Ti6Al4V(TC4)钛基混合粉体,将粉体压制后采用微波烧结制备GNPs⁃Cu/Ti6Al4V复合材料。通过X 射线衍射、扫描电子显微镜、能谱分析、显微硬度、室温压缩和摩擦磨损等测试手段,研究了石墨烯含量对钛基复合材料微观组织及力学性能的影响。研究结果表明:各石墨烯含量的钛基复合材料均出现Ti2Cu、TiC相,当石墨烯含量为0.5%时出现GNPs相,且含量越高GNPs 相的峰越高。随着石墨烯含量增加,钛基复合材料的相对密度、显微硬度、室温压缩强度和耐磨性先增加后降低,其中石墨烯含量为0. 8%时复合材料的性能最好。与未加入石墨烯的Ti6Al4V 基体相比,石墨烯含量为0. 8%的GNPs⁃Cu/Ti6Al4V复合材料的显微硬度和压缩强度分别提高80.9%、69.9%。GNPs/Ti6Al4V和GNPs⁃Cu/Ti6Al4V 复合材料的压缩强度分别比Ti6Al4V 基体高33.2%和69.9%。微波烧结制备GNPs⁃Cu/Ti6Al4V 复合材料的压缩强度分别比真空烧结和热压烧结高41.6%、22.9%。GNPs⁃Cu/Ti6Al4V复合材料的磨损机制为磨粒磨损与粘着磨损共存。

激光增材制造在航天领域的实践与展望

摘要:航天装备大型化、精密化、高性能化的发展趋势使传统加工工艺在航天构件制造方面面临挑战,具有复杂结构一体化成形、高精度成形特性的激光增材制造技术为航天构件的高质量生产提供了新途径。航天领域对极限制造和柔性制造的需求日益增长,激光增材制造的工艺、设备、产线正面临严峻考验。从航天构件典型结构特点入手,阐述了激光增材制造工艺在航天构件高质量制造方面取得的进展。进一步,以航天构件发展需求为导向,介绍了激光选区熔化成形装备和激光熔化沉积装备在航天领域中的发展现状及设计方向。同时,针对航天构件生产中多品种、小批量的特点,探讨了增材制造生产线在提升制造效率、降低成本和提高可靠性方面的最新进展。从激光增材制造工艺、设备和智能生产线三方面入手,系统地介绍并分析了激光增材制造技术在航天领域中的应用现状,并对其发展前景进行了展望,为激光增材制造技术在航天领域中的进一步应用提供了指导,也为该技术在航天制造中的深入发展指明了方向。

航空发动机及燃气轮机热障涂层高温腐蚀与防护

摘要:热障涂层是航空发动机及燃气轮机热端部件的关键热防护技术。随着热障涂层技术的发展,发动机的工作温度大幅提升,燃油效率和推重比显著提高,但热障涂层却面临日趋严重的高温腐蚀问题,包括环境沉积物(主要成分为CaO,MgO,Al2O3和SiO2,简称CMAS)腐蚀、熔盐腐蚀以及CMAS和熔盐的耦合腐蚀,它们会导致热障涂层过早失效,严重威胁航空发动机和燃气轮机的安全运行。本文综述了CMAS、熔盐、CMAS+熔盐等腐蚀问题的产生和腐蚀机理,重点从新型抗腐蚀热障涂层材料开发、涂层结构设计两方面总结了国内外在抗高温腐蚀热障涂层方面的研究进展。通过全面梳理高温下热障涂层的腐蚀问题及防护方法,展望了未来抗高温腐蚀长寿命热障涂层的研究方向。

吸波材料/结构及吸波-承载功能一体化结构研究进展

摘要:随着现代科学技术的迅速发展,电子信息设备的普及极大改善了人们的生活质量,但随之也带来了电磁干扰与电磁辐射等安全问题,尤其是对于国防军工领域,雷达测试技术的改进升级使武器装备的生存力面对巨大威胁。因此迫切需要开发高性能的电磁吸波材料来抑制电磁干扰与辐射,防止信息泄露。本文以吸波材料与吸波结构应用为切入点,对各种吸波材料的电磁波损耗机制进行了系统地整理,同时探讨了吸波结构的主要应用手段,并以此为基础阐述了吸波材料与吸波结构的研究现状与发展趋势,进一步分析了目前研究发展中吸波材料与吸波结构具备的优势与不足,最后提炼出了吸波领域未来需要解决的关键科学问题,针对现今吸波材料与结构功能一体化研究的不足,提出了关于未来研究方向的关键性建议。在此所讨论的方法与提出的策略有望对未来吸波-承载结构创新型设计提供一定的指导。

空间燃料电池金属钛表面复合涂层制备与性能研究

摘要:金属Ti因其密度小(仅为不锈钢的0.6倍)和比强度高等特点,是轻量化空间燃料电池金属板材料的首要选择,但其在弱酸性环境中长时间工作容易被腐蚀。为了改善金属Ti双极板耐蚀性,采用多弧离子镀技术在金属Ti表面制备了由Ti过渡层及TiN表层构成的Ti/TiN 复合涂层,研究制备工艺参数对Ti/TiN 复合涂层微观结构及力学、电化学性能的影响规律。利用场发射扫描电子显微镜(SEM)分析涂层的微观形貌,利用X射线衍射仪分析涂层的相组成,利用纳米压痕仪评价涂层的力学性能,利用电化学工作站评价涂层在模拟质子交换膜燃料电池(PEMFC)阴极工作环境下的耐蚀性。结果表明:制备工艺参数优化后的Ti/TiN复合涂层具有优异的表面质量和良好的耐蚀性,腐蚀电流密度为6.383 μA/cm2,是金属Ti腐蚀电流密度的0.6倍,Ti/TiN复合涂层显著提高了金属Ti 的耐蚀性,可为空间燃料电池金属双极板表面改性提供技术支持。

300M钢起落架作动筒挤压成形数值模拟

摘要: 针对飞机起落架传统制造工艺中成形载荷大、材料利用率低、生产周期长等问题, 提出利用反挤压工艺制造300M钢起落架作动筒件, 设计了反挤压模具及坯料形状, 并使用Deform-3D进行有限元模拟, 分析了挤压温度为1050~1150℃、挤压速率为30~120 mm·s-1 时挤压过程中温度、等效应变、挤压力的变化规律。结果表明: 随着挤压温度或挤压速率的上升,锻件温度均呈上升趋势, 但温度分布规律基本不变; 锻件挤压前期的挤压力随挤压温度的上升而降低, 后期挤压力差异不显著; 高挤压速率下初始挤压载荷较大, 但曲线更加平稳, 挤压温度为1050℃、挤压速率为120mm·s-1时挤压载荷基本稳定在6.0×106N; 不同挤压温度和挤压速率下的平均应变差分别为4.55%和3.41%, 其等效应变量比例和分布规律差别很小。综合分析, 最佳工艺参数组合为挤压温度为1130℃、挤压速率为30~50mm·s-1。

航空航天用智能纤维与制品

摘要:近年来, 智能纤维与制品在航空航天领域的应用受到了广泛关注. 这些智能材料通过将传感、能量收集、自修复等功能集成到传统纺织结构中, 不仅提高了航空器的性能, 还大大增强了其安全性和可靠性. 本文综述了智能纤维与制品在航空航天领域的最新研究进展, 包括其在结构健康监测、能量回收、振动和噪声控制等方面的应用. 通过详细分析不同类型智能纤维的材料特性和功能机制, 探讨了其在实际应用中的潜力与挑战. 此外, 本文还展望了未来智能纤维与织物在航空航天领域的发展方向, 提出了可能的研究热点和技术突破点, 以期为相关领域的研究和应用提供参考.

新型高强韧锆合金的研究进展及其在航空航天工业中的应用

摘要: 锆具有抗辐照、耐腐蚀、热膨胀系数小和密度低等优异性能。然而,纯锆的强度较低,限制了其在航空航天领域的广泛应用。本文从成分设计优化、组织性能之间的关系和强化机制等方面综述了团队近十几年在高强韧锆合金方面的研究进展,并阐述了所开发的新型高强韧锆合金在航空航天领域的应用。