缺陷二维材料强度

摘要:材料失效是固体力学关心的核心问题之一, 强度准则是描述材料失效的重要工具. 二维材料如石墨烯、六方氮化硼、过渡金属二硫化物等具有优越的力学性能, 在能源环境、电子信息、航空航天、纳米器件等领域都有重要的潜在应用. 二维材料缺陷不可避免, 由于其原子级厚度和极低的离面刚度, 缺陷残余应力会导致显著的应力集中和离面变形, 从而显著降低材料的强度. 尽管断裂力学理论被广泛用来描述二维材料的脆性断裂, 但研究发现六方氮化硼的能量释放率超过Griffith预测值一个量级, 与经典断裂力学理论预测不符. 另一方面, 虽然晶界强度理论解释了晶界强度随缺陷密度增加而反常升高的现象, 位错堆积模型揭示了多晶石墨烯强度与晶粒尺寸间的赝Hall-Petch效应, 但这些理论模型主要针对特定缺陷在单轴载荷下的失效行为, 缺乏普适性. 特别地, 二维材料缺陷结构、加载状态多样, 导致复杂的应力分布和变形失效模式, 增加了建立普适性强度理论的难度. 然而, 从原子角度, 材料失效的本质都是化学键发生断裂, 特别是大部分二维材料都由共价键构成, 因此从化学键失效的角度, 得到化学键失效的本征标度, 则有可能建立缺陷二维材料的统一强度理论. 本文首先综述了近年来二维材料强度的相关实验、模拟和理论研究进展, 着重介绍了缺陷二维材料的变形机理和基于化学键失效分析的缺陷二维材料统一强度准则. 最后, 本文讨论了二维材料强度理论的发展趋势, 旨在促进缺陷二维材料强度准则的理论和应用研究.

同步辐射技术在生物成像分析中的应用

摘要:生物学的发展对传统的研究方法提出了挑战,其深入研究依赖于方法学的发展. 同步辐射光源具有高亮度、高准直、宽频谱等性质,在从细胞到生物体的多尺度生物学研究中具有独特的优势。本文结合本实验室以及国内外的研究工作, 详细介绍了同步辐射相关技术包括X射线显微CT成像(Micro-CT)、纳米CT全场成像(TXM)、扫描透射软X射线显微成像(STXM)、X射线荧光成像(XRF)等在纳米-生物界面、细胞功能以及脑成像分析等方面的最新进展。

高强、高导铝合金研发的机器学习策略

摘要: 利用机器学习框架搭建材料研究设计平台对材料性能进行分析与预测,成为开发新型材料的重要手段。铝合金的导电率和强度往往是互斥的,导电率的提高,伴随着强度的降低。使用SVM、RF、ELM、BP 和DNN五种机器学习方法建立6000系铝合金的导电率和强度的机器学习预测模型。发现以热力学数据和加工工艺为特征输入,在合金性能预测模型的构建方面表现出巨大潜力。并最终筛选出精确度高,泛化能力好的深度神经网络预测模型。经过与实验数据验证,证明了所提模型对于铝合金导电率、强度预报的可靠性。

荧光导航冷冻聚焦离子束减薄技术的研究进展

摘要:细胞超微结构的原位解析是当前的一个研究热点。冷冻电子断层扫描成像技术(cryo-ET)是目前细胞原位结构解析的核心技术。cryo-ET 只能对厚度小于300 nm 的样品进行成像,因此利用cryo-ET 研究细胞超微结构时首先需要对细胞进行减薄。聚焦离子束(FIB)切割是目前冷冻生物样品减薄的主流技术。传统FIB 切割只能在细胞的任意位置上进行“盲切”,无法对细胞内部特定研究目标进行定点切割。光电融合成像技术(CLEM)恰可解决这一问题。CLEM 利用荧光成像技术识别并定位研究目标,通过光电图像的关联匹配,可在FIB 图像中确定荧光目标的位置,进而指导FIB 的定点减薄。针对荧光导航cryo-FIB 减薄的相关技术方法、仪器设备和工作流程进行了梳理,分析对比了主流方案的优缺点,旨在帮助研究者选择出合适的荧光导航FIB 减薄方案,并对该技术的未来发展方向进行了展望。

基于纳米孔结构的超高压石墨烯压力传感器设计

摘 要: 设计了一种基于纳米孔结构的超高压石墨烯压力传感器。由于氮化硼的六方晶体结构与石墨烯的晶体结构高度相似, 该传感器采用氮化硼/ 石墨烯/ 氮化硼的石墨烯复合异质敏感薄膜作为压力传感器的敏感材料, 利用石墨烯薄膜材料的压阻效应对压力进行检测。可为超高压石墨烯压力传感的结构设计和性能优化提供一定参考。关键词: 石墨烯; 纳米孔; 超高压; 理论模型; 有限元仿真

二维层状热电材料研究进展

摘要:热电效应可以将热能转换为电能并且没有危险物质的释放, 因此热电效应的应用吸引了越来越多人的兴趣. 自从石墨烯被发现以来, 越来越多的二维层状材料被报道, 它们通常比体块材料有着更加优越的电学、光学等物理性质, 而新的理论和实验技术的发展, 也促进了人们对于它们的研究。关键词:热电效应, 二维材料, 电输运, 热输运

基于忆阻器的图卷积神经网络加速器设计

摘 要:图卷积神经网络(GCN)在社交网络、电子商务、分子结构推理等任务中的表现远超传统人工智能算法,在近年来获得广泛关注。忆阻器(ReRAM)作为一种新兴的非易失性存储器,具有高密度、读取访问速度快、低功耗和存内计算等优点。实验结果显示,该文加速器相比CPU有483倍速度提升和1569倍能量节省;相比GPU也有28倍速度提升和168倍能耗节省。关键词:存算一体;新型非易失性存储器;图卷积神经网络;加速器

瞬态超高温MEMS石墨烯温度传感器设计

摘 要: 针对炮膛、航空发动机等设备对于超高温瞬态温度测量的需要, 设计了一种量程达3000 ℃ 的瞬态石墨烯温度传感器, 传感器由石墨烯敏感芯片、管帽、管壳三部分组成, 利用管帽传热的同时进行热阻隔。本论文设计的石墨烯MEMS 温度传感器具有量程宽、针对性强、稳定性高等特点, 可为石墨烯传感器应用于超高温瞬态测量领域提供可行性方案。关键词: 瞬态超高温; 石墨烯; 热阻效应; 外推法; 温度传感器

高性能镁合金的研究进展

摘要:追求更高强度的材料一直是结构材料研究人员的目标,尤其是轻质结构材料-镁合金,被誉为“21 世纪最轻的结构合金”。低密度、高性能镁合金在各种技术应用中非常具有吸引力,特别是在镁合金中加入主要合金化元素后,其强度、塑性得到了极大提升,从而促进了不同合金体系的镁合金发展。关键词:高强度;铸造镁合金;变形镁合金;超轻;稀土镁合金

基因编辑在线粒体疾病中的应用

摘要:线粒体作为细胞的能量工厂, 在维持细胞能量代谢与人类生命活动中发挥着至关重要的作用. 线粒体基因组的突变会导致一系列线粒体遗传代谢疾病的发生, 严重威胁人类生命健康, 发展靶向线粒体的基因编辑手段对于线粒体疾病的治疗具有重要意义。关键词:线粒体疾病; 线粒体异质性; 基因编辑