纳米结构超硬材料的机遇与挑战

摘要:经过几十年的研究和发展,纳米结构金刚石和立方氮化硼已相继被成功制备,其高硬度和强韧性充分表明纳米力学增强机制是制备超强超硬材料的有效途径。文章对近年来在相关领域的研究进行综述,总结了设计与寻找超硬材料的一般策略与原则,概括了典型的纳米微结构对超硬材料力学与热稳定性的影响,归纳了纳米结构超硬材料的高温高压相变与转化机制,并对当前的研究进展和潜在应用进行了归纳与展望。关键词:超硬材料,金刚石,立方氮化硼,高压合成,纳米聚晶超硬材料,非晶超硬材料

肠道菌群作为中药治疗心血管疾病的靶标:潜在的机制和治疗策略

摘要: 心血管疾病 (cardiovascular disease, CVD) 是全球范围内造成患者死亡的主要因素, 其发病机制复杂且死亡率逐年增高。大量研究显示, 肠道菌群及其代谢产物与心血管疾病的发生发展密切相关, 肠道菌群有望成为治疗心血管疾病潜在的新靶点。中药具有多组分、多靶点和整体性的特点, 可通过调控肠道菌群发挥对心血管疾病的治疗作用,是一种理想的肠道微生态调节剂。关键词: 肠道菌群; 肠道菌群代谢产物; 心血管疾病; 中药; 作用机制

硫化铋基纳米材料在癌症诊断和治疗中的应用

摘要:癌症仍然是目前威胁人类生命和健康的主要疾病. 随着纳米技术的发展, 集成不同诊断和治疗功能的多功能纳米材料已成为纳米研究中最活跃的领域. 其中, Bi2S3基纳米材料由于其特殊的物理化学特性及生物相容性等,在生物医学领域引起了极大的关注。本文系统地总结了Bi2S3基纳米材料的形貌调控及缺陷调控策略, 概述了Bi2S3基纳米材料最近在癌症诊断和治疗方面的研究进展.。关键词:Bi2S3, 制备, 成像, 诊断, 治疗, 多功能化

与硅基技术兼容的二维过渡金属硫族化合物电子器件

摘要:作为现代信息社会的物理基石, 以硅基材料为核心的集成电路极大推动了人类现代文明的进程. 但是, 随着晶体管特征尺寸微缩逐渐接近物理极限, 传统硅基材料出现了电学性能衰退、异质界面失稳等挑战, 导致集成电路数据处理能力提升难、功耗急剧增加等问题产生. 超薄二维过渡金属硫族化合物(transition metal dichalcogenides,TMDCs)具有表面平整无悬挂键、电输运性能优异、静电控制力强、化学性质稳定等优势, 可有效解决上述问题, 被认为是后摩尔时代集成电路的最具潜力候选材料之一. 目前, 二维TMDCs集成电路研究在多个关键领域均取得了突破性成果, 但距离产业化应用仍需要克服一些挑战. 本文着重介绍了二维TMDCs材料与电子器件在集成电路应用的各方面优势, 系统阐明了二维TMDCs集成电路在材料控制生长、范德华界面优化以及器件设计构筑等方面的关键科学问题, 提出了相应解决办法和应对措施, 分析了二维TMDCs集成电路产业化进程中的综合性挑战, 明确了“与硅基技术兼容”二维TMDCs集成电路发展路线的优势、可行性与突破方向.

超级铝热剂在固体推进剂中的应用研究进展

摘要:超级铝热剂具有高放热和高活性的特点,其反应速率和能量释放效率均显著高于传统铝热剂,应用于固体推进剂有望改善释能速率、效率、感度等指标,已成为固体推进剂的发展方向。总结了超级铝热剂的制备工艺、特点及其工业化应用潜力;论述了超级铝热剂在固体推进剂中的适用性;综述了超级铝热剂的微结构( 燃料/ 氧化剂界面控制、核壳结构、多层膜结构)和组分(金属氧化物、氟材料、碳纳米材料)对固体推进剂燃烧性能和能量释放的影响。超级铝热剂的添加显著提高了热反应活性和放热量,增强了推进剂的点火及燃烧性能,同时存在工业生产成本高、工艺控制要求复杂、燃烧过程精密控制难度大等问题,展望了未来超级铝热剂在固体推进剂中应用的研究重点和发展方向。

用于Li-CO2电池的过渡金属及其合金催化剂研究进展

摘要:【目的】提升锂-二氧化碳(Li-CO2)电池的反应可逆性和动力学特性,概括Li-CO2电池的简史、结构、工作原理以及关键科学问题,综述用于Li-CO2电池的过渡金属及其合金催化剂的成分、形貌、微观结构等特性及其对Li-CO2电池性能的影响,分析过渡金属及其合金催化剂在催化过程中的作用机制和演化行为。【研究现状】过渡金属对反应物吸附与活化、 放电产物沉积及分解具有促进作用。基于过渡金属元素构筑的单金属和双金属正极催化剂,在Li-CO2电池中的催化活性、作用机制及其自身在催化过程中的演化各不相同。金属间化合物具有显著区别于固溶合金、单分散双金属、单一金属的化学微环境,因此在促进反应物种吸附与活化、产物分解等方面表现出独特优势。【结论与展望】过渡金属及其合金催化剂的未来研究方向有:调控催化剂宏观形貌和表面微结构;监测催化过程中催化剂结构与成分演化、放电产物沉积与分解行为;建立适用于Li-CO2电池的催化剂关键“描述符”;开发低成本催化剂量产工艺。

柔性锌离子电池在可穿戴传感器中的应用研究进展

摘要:可穿戴传感器在运动、医学、康复等多个领域的应用极大地方便了对人体运动指标信号的捕捉和监测,有效避免了运动损伤,降低了就医频率甚至挽救了许多生命。随着可穿戴传感器的应用和普及,与之适配的柔性能源供应系统成为其发展的关键。近年来研究者们基于不同的能量释放方式,研究和设计了多种柔性能源供应系统,其中柔性锌离子电池以其高能量密度、高弹性模量、高循环稳定性和高安全性在众多供能体系中脱颖而出,成为可穿戴传感器最具潜力的柔性能源供应系统之一。本文综述了柔性锌离子电池近年来在可穿戴传感器方面的研究进展,主要介绍和总结了电池各组件(集流体、电极(正极、负极)、隔膜、电解质、封装)的材料类型、特点以及与可穿戴传感器集成的应用情况,最后讨论了柔性锌离子电池目前面临的问题和挑战。

固态电解质锂离子输运机制研究进展

摘要:全球环境问题推动了可充电锂电池技术的飞速发展. 与液态电解液相比, 固态电解质不易燃, 构筑所得固态电池的安全性能得以提升. 如果能够理解固态电解质中的离子输运行为, 就能精准调控固态电池锂的动力学稳定性和倍率性能. 随着计算机技术的快速发展, 原子尺度模拟技术成为理解材料离子输运的重要手段。关键词:固态电池; 固态电解质; 密度泛函理论计算; 分子动力学模拟

基于深度学习的超材料设计及光纤光束控制研究进展

摘要:超材料设计和光纤光束控制是光场调控研究的两个重要议题。传统方法取得一定研究进展的同时,也面临着有效性和适应性的问题。为弥补传统方法的不足,研究者们尝试将深度学习方法应用于以上两个议题。基于深度学习进行超材料设计和光纤光束控制的方法,具有速度快和自动化程度高的优势,为光场调控集成化、智能化提供新思路。关键词:材料;光纤光学;神经网络;光场调控;超材料设计;光学系统控制

人工智能赋能激光:现状、机遇与挑战

摘要 近年来,人工智能科技的普及为激光领域的科技教育注入了新动力,进一步推动了激光行业的快速发展并拓宽了应用范围。介绍了人工智能对激光领域的赋能效果,并对未来两个学科的双向赋能进行了初步分析和展望。关键词 激光技术;人工智能;机器学习;智能控制;优化设计