基于B7-H3 靶点的放射免疫治疗研究进展

[摘要] 近年来,放射免疫治疗( radioimmunotherapy,RIT) 因其精准靶向治疗而备受关注。寻找特异性免疫治疗靶点分子用于放射免疫治疗是一种极具临床应用价值的治疗模式。B7-H3( CD276) 是B7 家族中的一种免疫检查点,因其独特的表达特性和生物学功能,成为RIT 药物的一个理想候选分子。[关键词] B7-H3; CD276; 放射免疫治疗; 靶向治疗; 肿瘤

三端晶体管的人工突触器件: 材料、结构与系统

摘要:神经形态工程学旨在从硬件层面上构建人工仿生神经系统, 模拟人脑独特高效的运行机制, 进而实现神经形态感知和类脑计算功能. 生物突触是人脑学习和记忆的基本结构与功能单元. 因此, 构建类生物突触结构、功能的电子器件是实现神经形态感知与计算的关键. 相较于两端的阻变器件, 三端突触晶体管在实现多态调控和降低能量消耗上都具有优势. 此外, 三端突触晶体管还可以将压力、温度等外界物理刺激转化为电信号, 在采集视觉、听觉、嗅觉等信号来工作的人造感知神经系统方面有广阔的应用前景. 本文综述了三端突触晶体管的材料选择、器件结构以及功能应用, 并重点介绍了基于三端突触晶体管的人造视觉、听觉和嗅觉三种感知系统的最新进展. 最后, 总结了三端突触晶体管及其构建的人造感知系统面临的挑战, 并对其未来发展进行了展望.

固态电解质锂离子输运机制研究进展

摘要:全球环境问题推动了可充电锂电池技术的飞速发展. 与液态电解液相比, 固态电解质不易燃, 构筑所得固态电池的安全性能得以提升. 如果能够理解固态电解质中的离子输运行为, 就能精准调控固态电池锂的动力学稳定性和倍率性能. 随着计算机技术的快速发展, 原子尺度模拟技术成为理解材料离子输运的重要手段。关键词:固态电池; 固态电解质; 密度泛函理论计算; 分子动力学模拟

基于深度学习的超材料设计及光纤光束控制研究进展

摘要:超材料设计和光纤光束控制是光场调控研究的两个重要议题。传统方法取得一定研究进展的同时,也面临着有效性和适应性的问题。为弥补传统方法的不足,研究者们尝试将深度学习方法应用于以上两个议题。基于深度学习进行超材料设计和光纤光束控制的方法,具有速度快和自动化程度高的优势,为光场调控集成化、智能化提供新思路。关键词:材料;光纤光学;神经网络;光场调控;超材料设计;光学系统控制

人工智能赋能激光:现状、机遇与挑战

摘要 近年来,人工智能科技的普及为激光领域的科技教育注入了新动力,进一步推动了激光行业的快速发展并拓宽了应用范围。介绍了人工智能对激光领域的赋能效果,并对未来两个学科的双向赋能进行了初步分析和展望。关键词 激光技术;人工智能;机器学习;智能控制;优化设计

缺陷二维材料强度

摘要:材料失效是固体力学关心的核心问题之一, 强度准则是描述材料失效的重要工具. 二维材料如石墨烯、六方氮化硼、过渡金属二硫化物等具有优越的力学性能, 在能源环境、电子信息、航空航天、纳米器件等领域都有重要的潜在应用. 二维材料缺陷不可避免, 由于其原子级厚度和极低的离面刚度, 缺陷残余应力会导致显著的应力集中和离面变形, 从而显著降低材料的强度. 尽管断裂力学理论被广泛用来描述二维材料的脆性断裂, 但研究发现六方氮化硼的能量释放率超过Griffith预测值一个量级, 与经典断裂力学理论预测不符. 另一方面, 虽然晶界强度理论解释了晶界强度随缺陷密度增加而反常升高的现象, 位错堆积模型揭示了多晶石墨烯强度与晶粒尺寸间的赝Hall-Petch效应, 但这些理论模型主要针对特定缺陷在单轴载荷下的失效行为, 缺乏普适性. 特别地, 二维材料缺陷结构、加载状态多样, 导致复杂的应力分布和变形失效模式, 增加了建立普适性强度理论的难度. 然而, 从原子角度, 材料失效的本质都是化学键发生断裂, 特别是大部分二维材料都由共价键构成, 因此从化学键失效的角度, 得到化学键失效的本征标度, 则有可能建立缺陷二维材料的统一强度理论. 本文首先综述了近年来二维材料强度的相关实验、模拟和理论研究进展, 着重介绍了缺陷二维材料的变形机理和基于化学键失效分析的缺陷二维材料统一强度准则. 最后, 本文讨论了二维材料强度理论的发展趋势, 旨在促进缺陷二维材料强度准则的理论和应用研究.

2050铝锂合金板材拉伸力学性能三维各向异性

摘要:随着铝锂(Al-Li)合金在航空航天领域的应用愈发广泛,对其各向异性研究有助于Al-Li合金的进一步开发利用。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、电子背散射衍射(EBSD)等对T3态2050Al-Li合金板材进行显微观察,通过拉伸实验对合金板材轧制方向、垂直轧制方向、厚度方向的拉伸力学性能三维各向异性进行研究.。关键词:2050Al-Li合金;轧制;力学性能;各向异性;织构

基于纳米孔结构的超高压石墨烯压力传感器设计

摘 要: 设计了一种基于纳米孔结构的超高压石墨烯压力传感器。由于氮化硼的六方晶体结构与石墨烯的晶体结构高度相似, 该传感器采用氮化硼/ 石墨烯/ 氮化硼的石墨烯复合异质敏感薄膜作为压力传感器的敏感材料, 利用石墨烯薄膜材料的压阻效应对压力进行检测。可为超高压石墨烯压力传感的结构设计和性能优化提供一定参考。关键词: 石墨烯; 纳米孔; 超高压; 理论模型; 有限元仿真

光电压瞬态技术: 实时分析膜界面动态过程的新手段

摘要:活性分子与细胞膜之间的相互作用在许多基本的生物过程中扮演着至关重要的角色, 然而如何实现对此界面动力学过程的原位、实时、无标记且无侵入监测仍是生物物理研究领域所面临的一大挑战. 我们与合作者开发的光电压瞬态技术, 为解决这一问题提供了一种新途径. 该技术利用硅片光电响应生成电荷, 并将磷脂膜的充放电过程记录为电压瞬态脉冲、建立了该充放电过程与界面瞬时结构和性质之间的关联性. 因此, 通过对随时间演化的电压脉冲进行分析, 可以揭示活性分子作用下膜结构实时动态变化情况, 尤其是不同作用状态之间转换的时间信息, 可作为传统技术的有益补充. 同时, 该技术设备搭建成本低廉, 操作方便, 无需复杂的数据处理过程. 本综述概述了光电压瞬态技术的工作原理、设备搭建以及数据处理方法, 并以经典细胞膜模型——磷脂双层膜为例, 总结了该技术在探索磷脂膜水合特性及其与活性分子(如表面活性剂、聚合物、多肽和纳米颗粒) 相互作用机制方面取得的最新进展. 最后就该技术优缺点进行讨论并展望未来发展前景.

液压元件及系统智能化发展现状及趋势思考

摘要:第四次工业革命利用信息化技术促进产业变革,将带我们进入智能化时代。由于液压系统作为核心动力和控制部分,广泛应用于先进制造、航空航天、海洋等重大装备,工业装备的智能化必然会要求液压元件及系统实现智能化。关键词:液压系统;智能化;感知;调控;运维