智能座舱人机交互设计关键技术研究进展,

摘要: 为揭示人机交互( Human-Computer Interaction,HCI) 设计技术在智能座舱环境下实现人与车辆、人与环境交互的过程与作用,提出智能座舱人机交互模型,并综述了以创新设计为驱动的智能座舱交互设计关键技术,为重新定义车载信息交互系统和驾驶监控系统提供了提供了技术支撑。从感知层、信息交互层及认知与决策层3 个方面研究座舱人机交互模型,分别针对多模态信息输入与输出,梳理了图像识别、可穿戴、声场感知识别、信息可视化、混合现实及人机对话等交互技术及其主要应用成果。探讨了智能座舱人机交互设计的测评方法,为提升座舱人机交互体验提供理论参考。

18000r/min超高转速轻量化新能源汽车电机轴开发

摘要:随着新能源汽车电机转速的不断提升,电机轴面临更加苛刻的刚强度、耐久性和抗过挠要求。通过合理选材,并辅之以轻量化设计、磁环境优化、工艺匹配等方法,成功开发出满足18 000 r/min 服役要求的电机轴。新电机轴在质量减少25.5%时,其自由模态频率、扭转强度、扭转疲劳寿命、台架试验过程中的噪声和温升等性能指标均不低于原低转速电机轴。通过对材料成分及工艺的优化以增强基体的强韧性有利于提升电机轴的抗扭及抗疲劳性能。通过轻量化结构设计和反向辅助磁场设计,可降低电机轴在高速旋转过程中承受的单边磁拉力、离心力、系统重力等,也有利于提升电机轴的抗挠能力,进而提升电机的耐久性和车辆的舒适性。

车身非金属件用导静电涂料的制备

摘要:用丙烯酸树脂作为成膜物质,分别以不同厂家的导电钛白粉和导电云母粉为导电填料,制备了导静电涂料。探究了研磨时间对涂料细度以及所得涂层光泽、电阻和颜色的影响。选择合适的国产导电填料(导电云母粉ECP-100C或导电钛白粉ECF-3000C)制备的涂料的细度及其涂层电阻等关键指标与用国外同类产品制备的涂料相当,颜色接近于纯白,L为91.02左右,电阻超过1×106Ω,完全满足车身非金属件用白色导静电涂料的性能要求。

新能源全铝客车制造技术浅析

摘要:浅析新能源全铝客车生产制造技术。以客车轻量化为目标,从结构设计、材料选择、生产工艺、质量控制四方面论述现今客车轻量化领域的工艺技术水平。

汽车车身特种钢材点焊工艺研究

摘要:阐述了汽车用高强钢、热成形钢和镀锌钢材料组织和力学性能及其电阻点焊影响因素。并对高强钢、热成形钢和镀锌钢电阻点焊工艺进行分析,明确其工艺设计原则。高强钢焊接适合软规范,适当加长焊接时间,采用平面及球形端面电极,可焊接范围更广。镀锌钢焊接适合强规范,适当提高焊接电流并增大焊接压力,采用球形电极并增加修磨频次,优选Cu-Al2O3电极。设备方面两者建议优选中频伺服焊接技术。

汽车车身用铝合金板材的研究现状

摘要:可用于汽车车身的铝合金板材主要包括 2000系、5000系和 6000系合金。从汽车车身用铝合金板微合金化及热处理、车身用铝合金板的先进成形技术和车身用铝合金板的有限元研究 3个方面介绍了汽车车身板用铝合金的研究现状。

新能源汽车电池箱用零件冷镦锻造工艺研究

摘要:本文主要介绍了某合资品牌新能源电动平台底盘电池箱零件的成形方法和工艺流程,分析了新能源汽车电池箱零件的相关技术,探讨了新能源汽车电池箱零件的有效控制策略,旨在加强对新能源汽车电池箱零件冷镦成形工艺的研究,把控该项工艺实施的要点,基于实际情况选择适宜的冷镦钢线材材料,从多方面来把控各项工艺指标,从而保障新能源汽车电池箱零件的应用质量,提升汽车安全性能,促进新能源汽车制造行业的可持续发展。

某新能源汽车复合材料电池包轻量化设计

摘要:电池包是电动汽车的动力源,其中下箱体及模组安装板是电池包的主要承载部件,采用碳纤维复合材料代替原不锈钢材料对下箱体及模组安装板进行轻量化设计。上箱体兼顾到制造成本问题,使用原不锈钢材料。结果表明,采用碳纤维复合材料的电池包在满足力学性能的同时,相比于原不锈钢材料,电池包重量指标得到了较大的改善。

发动机机体和气缸盖加工生产线装备先进技术及应用

摘要:介绍发动机机体、气缸盖加工生产线装备选择总体原则,重点阐述机体缸孔、主轴承孔,气缸盖燃烧室面、导管座圈孔和凸轮轴孔加工装备先进技术及应用,以及机体、气缸盖生产线辅助装备关键技术及应用,为发动机机体、气缸盖加工生产线装备选择提供了参考。

氢燃料电池车储氢技术及其发展现状

摘要:在氢能产业链中,储氢技术是氢能发展中不可或缺的一个环节,各种储氢技术已应用于车载储氢系统。综述了氢燃料电池车储氢技术的研究现状,并对高压气态储氢、低温液态储氢、有机液体储氢和金属氢化物储氢的优缺点进行对比分析。物理储氢技术具有储氢质量高、成本低、操作简单等特点;化学储氢技术在具有高储氢能力的同时提高了储氢技术的安全性。为满足氢燃料电池汽车对储氢技术的要求,在达到更清洁、更安全、低成本标准的同时,保持高能量密度储存是储氢技术的关键。