光热材料的发展现状及应用前景

摘要:光热效应是指材料在太阳光或激光照射下产生热量的特性, 通过光热作用不仅能够最大限度地提高太阳能转换效率, 而且还可以充分发挥激光的传播优势打破材料在时间和空间维度上的局限性, 因而具有巨大的发展潜力和应用前景. 目前, 研究人员根据上述光热效应的特性和优势, 在能源利用、生物医药、催化转化、智能器件等领域进行了广泛和深入的研究和探索, 实现了该效应在光热海水淡化、光热治疗、光热催化、光热智能材料等领域的应用. 本文从目前研究中被普遍认可的光热效应机理出发, 综述了近期研究人员在光热材料开发及其利用等方面的研究进展, 并展望了光热材料未来可能发展方向, 以期进一步促进光热材料的发展及应用.

活性氧捕获材料的研究进展

摘要:生命从呼吸中获得氧气, 氧气再进一步在线粒体中将糖类等氧化得到能量, 提供给生命过程使用. 然而在氧化过程中, 会生成高度活泼的活性氧. 当体内控制失衡的时候, 它的浓度会大大增加, 发生氧化应激, 对机体产生不可逆的破坏, 引起衰老、肿瘤、心血管以及神经性疾病等. 抵抗活性氧的核心物质是抗氧化物, 它的存在使氧化应激受到控制, 从而保护机体免遭伤害. 本文对国内外近年来在活性氧自由基捕获方面的研究进行系统的综述, 通过梳理, 提出研究的金字塔型三级结构. 设计抗氧化物大分子与无机纳米粒子复合的纳米杂化自由基捕获器可以一方面解决无机纳米粒子的毒性问题, 另一方面还可以赋予纳米粒子额外的功能. 期待这篇综述文章能为改性纳米粒子捕捉活性氧提供一些有益思路, 为功能高分子材料与杂化纳米技术在生物医学领域的探索提供借鉴.

硫化纳米零价铁研究进展: 合成、性质及环境应用

摘要:纳米零价铁(nanoscale Zero-Valent Iron, nZVI)是水环境修复领域研究最广泛的材料之一, 但易团聚和氧化、电子选择性差等缺点制约了其实际应用. 对nZVI表面进行硫化制备成硫化纳米零价铁(Sulfidated nanoscale Zero-ValentIron, S-nZVI), 能够提高纳米颗粒的分散性能、增强稳定性, 提高电子选择性, 已成为目前研究热点. 本综述以“合成方法—理化性质—应用性能”为主线展开论述, 首先总结了不同的硫化方法对S-nZVI理化性质的影响, 重点阐释通过调控合成条件(硫化顺序、硫化剂种类、硫铁比等)以调节S-nZVI的微观结构和界面元素化学形态(实际S/Fe、硫分布、FeSx 形态等), 从而改变其宏观性质(亲疏水、析氢、导电性等), 最终实现对有机污染物与金属污染物的定向去除. 此外, 详细综述了S-nZVI用于去除卤代有机物、硝基苯有机物和重金属等污染物方面的研究进展, 并对未来的研究方向进行了展望.

表面超疏水对摩擦学性能的影响:机理、现状与展望

摘要:超疏水表面由于极端的非润湿特性,在减阻、耐磨、防腐蚀、防结冰和自清洁等领域有着极为广泛的潜在应用。表面粗糙结构和低表面自由能是形成超疏水表面的两个决定因素,也是超疏水表面具有优异的摩擦学性能的主要原因。本文主要对近年来超疏水表面在摩擦学领域的研究进行总结。首先分析了超疏水表面摩擦学的相关理论,然后重点阐述了超疏水表面在摩擦学领域的研究现状,探讨了影响超疏水表面摩擦学性能的因素和作用机理,并对耐磨超疏水表面和超滑表面的摩擦学研究进行了分析。最后提出了超疏水表面摩擦学研究应该关注的重点和方向。本综述旨在引起更多学者对超疏水表面摩擦学研究的关注,对于扩大超疏水表面的应用领域具有重要的理论价值和现实意义。

纳米材料表面化学作用之电子结构原理

摘要:在电子结构层面揭示纳米材料表面化学作用的物理与化学机制、共性规律与普适原理是纳米材料相关领域基础研究的科学目标,然而由于缺乏成熟的研究策略和系统性理论认知框架,相关概念与原理体系长期不完善,导致纳米化学领域的理论认识远落后于实验探索。本文基于作者近年研究成果,介绍基于表面价轨道竞争重构机制的纳米材料表面化学作用在电子结构层面的概念与理论认知体系;基于表面化学吸附电子态与纳米材料能带态间的竞争作用与相互影响模型,对纳米材料表面化学领域中的一些基本共性科学问题给出自洽解答。其一,阐明了纳米材料表面活性与稳定性的对立统一辩证关系的物理根源在于波函数的归一化原理。其二,揭示出尺寸减小普遍增强纳米材料表面化学活性的物理根源有两种机制:一是削弱对表面价原子轨道的束缚强度,二是放大缺陷等其他结构参数的影响效果。其三、建立纳米尺度协同化学吸附(NCC)模型,揭示出配体覆盖度调控纳米材料能带电子态及物理与化学性质的电子结构层面机制与共性规律。其四、揭示纳米材料尺寸(r)、比表面积(S/V)、表面配体及覆盖度(θ)在纳米表面化学作用中电子结构状态变化角度发挥作用的物理意义。

基于DNA纳米技术的晶体材料构建

摘要:纳米颗粒晶体在电学、光学、磁学等方面具有独特的性质与优越的性能,人工构建纳米颗粒晶体对于材料科学的功能突破和性能发展具有重要意义。DNA 由于其具有碱基互补配对的特性,可以用于构建各种纳米级结构、组装晶体并调控结构与组成,从而实现材料特定性能的定制。目前,DNA纳米技术构建的纳米颗粒晶体材料已经在催化剂、光学器件、半导体材料等方面实现了应用,表明其构建三维晶体作为普适的周期性分子支架的基本目标逐步实现。在这篇综述里,我们系统性地阐述了DNA瓦片、可编程原子等价物、DNA折纸三种重要DNA 纳米晶体构建技术的发展历程与最近的研究进展,并对利用DNA纳米技术构建晶体材料的未来发展方向进行了讨论。

碳量子点上转换材料的制备及其应用研究进展

摘要: 碳量子点(CQD)具有化学惰性,生物相容性和低毒性等优势,可能在能源、生物医药等领域得到广泛的应用.CQD可通过表面被聚合物( 例如PEG)钝化而表现出很强的光致发光特性.在生物成像,疾病检测和药物输送中使用表面钝化后的功能化生物分子更为有效.并且碳材料由于其优异的电化学性能还展现出在催化、电子器件等许多领域广泛的应用前景.我们将对近年来碳量子点发光材料的研究进行总结,并讨论碳量子点在能源、环境和其他一些领域的应用.

大尺寸银纳米片的可控、高效制备及在导电胶中的应用

摘要: 具有二维片状结构的银纳米片表现出优异的电学、光学和化学性质,广泛应用于电子、催化、生物等领域。化学还原法制备的银纳米片直径通常小于1 μm,且产量低。为了解决上述问题,以鸟嘌呤为结构诱导剂,硝酸银为银源,通过化学还原法制备了大尺寸银纳米片,并得到优化的制备条件:在0℃下,滴加速度为1.0~1.3mL/min,搅拌速度为300r/min,B 液中鸟嘌呤浓度为16.56mmol/L、AgNO3浓度为0.50mol/L,在最优条件下制得10~20μm的大尺寸银纳米片,单位体积反应液中银纳米片产量高达15g/L。X射线衍射(XRD)和Raman光谱测试结果表明,银纳米片的生长机理为鸟嘌呤分子的羰基氧原子选择性吸附于银晶体的(111)晶面,形成包覆,还原生长的银原子沉积于(110)和(100)晶面,横向生长形成银纳米片。以最优条件下制备的大尺寸银纳米片作为填料,分别以二乙二醇单丁醚和乙醇为溶剂制得导电胶,其渗流阈值低至30%~40%(质量分数)。

X射线光电子能谱技术及其应用

摘要: X射线光电子能谱法(XPS)是最重要且使用最广泛的表面分析技术。较为全面地介绍了X射线能谱法,内容涵盖原理、分析方法、应用及技术进展。原理介绍基于理工科大学本科层级的知识,阐述了XPS的科学原理以及仪器原理;分析方法部分概述了分析的关键步骤及要点;应用部分以热门研究的材料类型分类(催化剂、生物材料、碳材料、高分子材料等)进行介绍,介绍的同时兼顾介绍了X射线光电子能谱法的一些常用技术以及在各种材料中的应用特点。本文旨在帮助该领域的初学者,包括尚未完全熟悉该技术的研究人员、研究生和X射线光电子能谱从业人员,使他们能够全面了解X射线光电子能谱技术。

梯度结构金属材料的制备方法和力学性能研究进展

摘要:金属结构材料是保障国防建设、航空航天和机械工程等领域快速发展的物质基础,向其中引入梯度组织可以使不同尺寸的结构单元相互协调作用,突破单一均质材料的性能短板,有效改善金属材料的综合服役性能。本文围绕近几年国内外梯度结构金属材料的相关研究和进展,首先介绍了梯度结构金属材料的制备方法和工艺原理,并总结了其优点与局限性;其次对梯度金属材料的微观组织结构进行了阐释,论述了梯度结构金属材料的服役性能特点,包括强度、塑性、摩擦磨损性能、疲劳损伤性能和耐腐蚀性能,提出了调控梯度结构金属材料服役性能的优化策略;最后对其未来研究方向和面临的挑战进行了展望。