电弧增材制造技术在滑动轴承领域的应用

摘要: 阐述了利用钎焊、激光熔覆、电弧喷涂、电弧堆焊等增材技术替代常规离心铸造制造滑动轴承的优势及目前的技术水平,同时阐述了随增材制造技术而研发的高温抗蠕变巴氏合金线材成分,线径1. 6 mm 的细线材加工技术现状,展望了增材制造应用在滑动轴承领域以及巴氏合金线材成分优化和相关配套技术的发展趋势,对过细的SnSb 相是否会加速轴径的磨损和多次电弧堆焊增材是否会影响结合强度的问题进行了探讨。

新型红外隐身结构材料研究综述

摘要:随着军用光电技术的快速发展,隐身技术在现代作战体系中的作用日趋重要,其中,隐身材料对于提高隐身性能至关重要。本文针对红外隐身材料,重点从单波段的红外隐身、多波段兼容的红外隐身、动态的红外隐身三方面综述了国内外红外隐身材料的研究进展,就微纳结构大面积柔性加工方法进行了深入分析。关键词:红外隐身;超构表面;法布里珀罗腔结构;光子晶体;微纳制造

磁性生物质炭修复重金属污染水体研究进展

摘要:从水环境中分离普通的生物质炭很困难,而且可能会导致二次污染,这就阻碍普通生物质炭作为吸附剂的大规模应用,解决这一问题的一个有效策略是将过渡金属及其氧化物引入生物质炭基质中,产生易于分离的磁性生物质炭。磁性生物炭不仅能有效去除水溶液中的重金属污染物,而且还可以通过施加外部磁场,实现磁性吸附剂的分离,进而回收———再生———再利用,提高其修复性能。由于其在重金属吸附方面的优越性,在重金属污染水处理领域引起了广泛的关注和研究。综述简要总结了磁性生物炭的不同制备方法,整理磁性生物质炭吸附重金属的机制,分析影响磁性生物质炭与重金属相互作用的因素。最后,指出了磁性生物质炭在重金属污染水体水处理中进一步的研究需求和未来的研究方向,并展望了未来的发展前景和潜力。

3D打印微波吸收材料研究进展

摘要:近年来,随着3D 打印技术逐渐成熟化与商业化,这种新兴制造技术开始应用于吸波材料的设计与制备中。本工作从3D打印频率选择表面类和超材料类吸波材料、3D打印蜂窝类吸波材料、3D打印陶瓷类吸波材料和3D打印其他吸波材料等几个方面综述了3D打印技术在微波吸收材料制备方面的研究进展,对3D 打印技术在微波吸收材料制造中存在的打印材料局限性、材料力学性能缺乏、微观结构的测试分析等问题进行了阐述,同时对3D打印技术在微波吸收材料制造领域未来的发展趋势,如小型化、多功能、智能化也进行了展望。

超分子凝胶润滑材料的研究进展

摘要:开发高性能润滑材料对于降低摩擦磨损带来的能量损失, 以及避免严重的机械故障和关节损伤均具有重要意义。超分子凝胶润滑材料可以实现对液体润滑剂的高效捕获, 因其良好的触变性能, 解决了传统润滑材料易爬移、泄漏及润滑效率低等问题。超分子凝胶润滑材料具有性能动态可调和可逆相转变等特点, 使其具有发展为智能润滑材料的天然优势。通过功能化设计可以赋予超分子凝胶润滑材料减摩、抗磨、抗腐蚀、自修复及高承载能力等特性, 在机械润滑和生物润滑领域均表现出潜在的应用前景。本文综述了基于不同液体润滑剂(润滑油、水及离子液体)的超分子凝胶润滑材料的发展现状, 并讨论了其在不同润滑领域的发展前景。

超快激光加工二维材料研究进展

摘要:二维材料如石墨烯、六方氮化硼、过渡金属硫化物和黑磷,因其优异特性在科研和工业领域备受关注,在传感、催化、储能等领域具有巨大应用潜力。超快激光加工技术以其高精度和广泛的材料适应性,在二维材料的加工和器件制备中扮演着关键角色,实现了材料的无损或低损加工,在石墨烯的制备、还原氧化石墨烯、烧蚀和图案化转移等方面表现出优势。对于过渡金属硫化物和其它二维材料,超快激光同样能有效实现相变、剥离、减薄和表面沉积. 超快激光与二维材料的相互作用为微纳电子学、光电子学等高科技领域的应用提供了新机遇,未来研究将聚焦于成本降低、量子器件性能提升和高性能微纳器件的开发。创新点: (1) 从激光与物质相互作用的方面,阐述了国内外超快激光加工二维材料的最新进展。(2) 分析了超快激光加工不同二维材料的技术特点,并阐述了其相关应用发展。

耐高温吸波材料的研究进展

摘要:雷达探测技术的发展对武器装备热端部件提出更高的隐身要求,而耐高温吸波复合材料是解决雷达隐身问题的关键材料,具有重要应用前景和战略意义,因此国内外研究学者针对吸波材料进行了大量研究。本文介绍了电磁波的不同吸收原理,包括磁损耗型、介电损耗型、电损耗型。综述了碳基、金属基、三元层状化合物以及陶瓷基吸波复合材料等常用耐高温吸波材料的最新研究进展。碳基材料(石墨、炭黑、石墨烯、碳纳米管等)多采用复合耐高温材料的方式发挥其吸波性能并解决高温氧化问题;金属氧化物材料(ZnO、MnO2、Fe3O4等)采取调整材料微结构的方式来增加界面极化损耗;三元层状化合物材料(主要为TisSiC2)主要配合AlO3、董青石等不同的热稳定性基体中使用,以此解决纯度以及高温氧化的问题。而陶瓷吸波材料因其出色的热稳定性成为在相对高温下研究最多的类别,本文总结了SiC二元以及SiCN、SiOC、SiBCN多元陶瓷吸波材料的最新研究进展,SiC二元吸波材料多采用元素掺杂及微结构调控的方式来提升吸波性能;SiCN三元吸波材料介电性能优异,目前的研究大多数采用复合磁性颗粒(Fe、Co、Ni)的方法;SiOC三元吸波材料成本低、导电性好,研究人员通过添加超高温陶瓷、BN等第二相组元方式来进一步发挥其吸波性能;而针对SiBCN四元吸波材料的吸波性能提升措施主要包括材料复合(高介电常数材料或者过渡金属)以及前驱体分子结构调整两种方式。最后本文从吸波频宽、耐温性能、多频谱兼容隐身等方面展望了耐高温吸波复合材料的发展趋势,旨在为未来新型吸波材料的发展提供新的研究思路。

石墨烯材料在热管理领域的应用进展

摘要:介绍了石墨烯作为高导热材料的研究现状和发展前景,总结了石墨烯材料的制备方法,包括机械剥离法、外延生长法、化学气相沉积法及氧化还原法等;探讨了不同类型石墨烯材料的导热机理,指出石墨烯材料通过声子和电子进行热传导,并以声子导热为主介绍了串联网络热阻模型和导热逾渗模型;归纳了单层或少层石墨烯、石墨烯膜、碳纳米管/石墨烯复合膜及相变高分子/石墨烯复合材料等类型的高导热石墨烯材料在热管理领域的研究和应用进展。

高温金属结构材料单晶制备及其研究进展

摘要:高温金属结构材料具有极其突出的高温力学性能、抗氧化能力等,被广泛用于航空航天、武器装备、核电装备等重要领域。其单晶不存在晶界破坏,具有韧-脆转变温度低、高温结构性能稳定等优点,使用温度比相同成分的传统柱状晶提高50~100℃,安全服役寿命得以显著提高,因而高温金属结构材料单晶的制备、取向及其性能已经成为当前高温结构材料领域研究的热点。该综述简要回顾了高温金属结构材料单晶发展历程,重点且系统论述了近年来国内外最新研究进展,分别介绍了气相沉积法、电子束悬浮区域熔炼法、光束悬浮区域熔炼法、等离子弧熔炼法、增材制造技术等制备工艺、原理、优缺点及最新研究现状,总结了不同制备工艺对高温金属结构材料单晶组织、性能的影响及其作用规律,并展望了未来的研究趋势以及应用前景,以期对高温金属结构材料的优化和发展提供借鉴意义。

材料科技前沿及相关颠覆性技术发展态势分析

摘要:材料是人类社会生存和发展的物质基础,近年来材料科技加速发展,新材料不断涌现,应用更迭加速,材料种类、创新和应用需求从速度、广度、深度及影响都呈现爆发态势。材料在经济社会发展中的作用逐渐从基础性、支撑性向颠覆性、引领性转变,成为面向未来产业取得竞争优势的关键性领域。总结材料领域颠覆性技术发展经验,分析发展态势,对于应对传统产业颠覆性重构,前瞻部署变革性技术研发,加快实现前沿技术创新应用,取得更加有利的国际竞争优势具有重大意义。