柔性散热材料研究进展
摘要:随着电子器件向着高集成化、高功率化、一体化和多功能化方向发展,以及可穿戴器件、柔性显示和软体机器人等新型柔性器件的兴起,对器件的高效散热和柔性可变形能力提出了更高的要求,因此柔性散热材料得到越来越多的关注,具有广阔的应用前景。本文综述了柔性散热材料的研究进展和现状,对比分析了碳基类、聚合物类和液态金属类这三大类柔性散热材料的优缺点,指出兼具优良导热性、柔韧性的复合柔性散热材料具有深厚发展潜力和实用价值。
连续螺旋微纳纤维材料的研究进展与应用探索
摘要:近年来, 连续螺旋微纳纤维因其独特的几何特征和物理化学性质, 在智能材料、仿生设计和精准医疗等领域引发了广泛关注. 其可控的形变机制和动态响应特性, 为开发新一代功能柔性材料和技术提供了全新的研究视角. 静电纺丝和微流控技术为制备连续螺旋纤维提供了创新途径. 静电纺丝通过电场力实现了螺旋纤维的高长径比和有序排列, 而微流控技术则通过精细的流体控制展现了螺旋几何特征的高度可控性. 这两种技术共同推动了微纳米螺旋连续纤维的功能化和应用多样化. 本文系统地综述了两种技术在制备螺旋纤维方面的关键机理和影响因素, 并介绍了螺旋纤维在生物医学、环境治理和智能传感等领域的应用. 最后, 探讨了该领域的当前挑战和未来发展前景.
纳米纤维素产业化进展及市场趋势分析
摘要:近年来,随着人们对可再生生物质资源转化利用的日益重视,纳米纤维素因其独特的性质而受到广泛关注。本文主要介绍了纳米纤维素国内外的产业化进展,并简要分析了纳米纤维素未来几年的市场趋势及面临的主要问题。
液态金属脆化研究进展
摘要:液态金属脆化(Liquid metal embrittlement, LME)是一种固态金属在与液态金属接触后其力学性能显著降低的现象。该现象从发现至今已有近百年历史,但并未引起学界广泛关注,近年来,随着液态金属在医疗设备、电池能源、3D打印、计算等领域的应用以及LME对能源和制造等行业的明显阻碍,LME现象逐渐引起人们的重视。本文综合介绍了LME的特性、影响因素、微观机制以及研究现状,主要从理论研究、实验进展和模拟仿真三个方面对LME展开了讨论,总结了该领域目前存在的问题,并为未来的研究工作提供了建议。
液态金属3D打印技术进展及产业化前景分析
摘要: 3D打印技术,特别是低熔点金属3D 打印技术代表着未来先进制造技术的发展趋势之一,是推动我国制造业转型升级,实现由“制造业大国”向“制造业强国”转变的重要机遇。文章简述了当前3D打印特别是低熔点金属3D打印技术的研究现状,介绍了国际3D 打印产业的发展现状,剖析了我国3D 打印产业发展所面临的机遇和挑战。特别指出,现有通行的3D打印大多面向单目标种类材料,或者金属或者非金属,尚不易同时实现跨度较大的多种类材料的同时打印,这主要是因各种材料在物理化学特性如熔点、黏附性及彼此间相容性上存在的巨大差异所致,而新出现的低熔点金属3D打印方法将有助于改变这一格局。最后对液态金属3D打印技术的未来发展进行了总结和展望。
碳纳米管基电热材料的结构设计与应用
摘要:随着社会的发展,人们的日常生产生活对电热材料提出了更高的要求。碳纳米管因具有轻质、高电导率、高电热转换效率等特点,成为新型轻质高效电热材料的研究热点。纳米尺度的单根碳纳米管无法直接使用,因此,需要以有序的宏观形态进行组装以获得可用的高性能电热材料。介绍了基于碳纳米管的电热材料的主要宏观组装形态,对其结构设计进行了阐述,并对其应用方向进行了介绍,最后对碳纳米管的进一步工业化应用进行了展望。
新型引拔成型绝缘材料的产业化研究
摘要:基于引拔成型绝缘材料在实际生产及应用中提出的各方面性能更新的需要,对新型引拔成型绝缘材料的产业化进行了深入研究。针对引拔绝缘材料及系列产品生产过程中存在的产品品质提高、生产效率改进、环保要求等问题,提出和实施了更优的产品设计与技术方案。
超材料吸波体及其3D打印制造研究进展
摘要:超材料吸波体由于其独特的电磁特性和较强的结构设计性等优点,成为电磁吸波领域的研究热点。而3D打印技术能够突破传统制造方式的缺陷,极大地提高设计自由度,因此利用其制备超材料能够实现结构与功能的一体化,逐渐成为超材料吸波体领域的重要发展方向。本文阐述了基于等效介质理论的超材料吸波体吸波机理,介绍了超材料吸波体在宽频吸波、极化和角度不敏感、动态可调性等方面的研究现状,进而归纳了3D打印超材料吸波体的研究进展以及现阶段3D打印超材料吸波体研究中存在的问题,并从吸波性能、结构设计、应用发展三个角度对3D打印超材料吸波体的未来发展进行了展望。
选区激光熔化制备难熔高熵合金研究现状与展望
摘要:难熔高熵合金(RHEAs)因具备高熔点、高硬度和高温相结构稳定性成为航空航天、海洋船舶和核能工业等领域的重要材料。本文对选区激光熔化(SLM)技术制备的不同体系RHEAs 进行梳理,并对其微观组织、力学性能、残余应力和耐腐蚀性能进行分析。结果表明,SLM 制备的RHEAs 未改变其固有相(BCC 相),且枝晶形貌为树枝晶、等轴晶、胞状晶等,晶粒尺寸较电弧熔炼平均减少80%~90%;细晶强化、固溶强化等强化机制有效提升了材料的力学性能;SLM 技术在制备RHEAs 时,热源的局部加热和冷却会造成残余应力积累,可通过工艺参数优化、母材预热等方法降低热应力;SLM 可实现难熔元素均匀分布,减缓腐蚀介质侵蚀合金表面的速率,从而增强合金的耐蚀性能。
