激光熔覆难熔高熵合金涂层研究进展

摘要:难熔高熵合金(RHEAs)是一种由多种难熔元素组成的新型合金,具有优异的高温力学性能、高温抗氧化性能、摩擦磨损性能、耐腐蚀和抗辐照等综合性能,有望应用于航空、航天、核能、石油化工和医疗器械等领域。受限于传统合金熔炼技术,目前制备的高熔点难熔高熵合金存在成型尺寸较小、元素偏析严重以及密度大等问题,极大地限制了难熔高熵合金的发展和应用。激光增材成形技术以高能量密度激光束为加热源,通过计算机辅助设计与控制可实现金属材料“离散-堆积”成形过程,为突破难熔高熵合金的研究瓶颈提供了一条行之有效的途径。本文综述了近几年采用激光熔覆技术制备的难熔高熵合金涂层(RHEACs)的加工特性、显微结构和性能特点。重点讨论了合金成分、加工工艺对难熔高熵合金涂层相组成、显微形貌以及显微硬度、耐磨损、耐腐蚀和抗氧化性能的影响,指出目前激光熔覆难熔高熵合金的研究现状、不足和挑战,旨在为后续的研究提供理论性指导,并对其未来的发展趋势进行了展望。

功能玻璃关键材料体系发展战略研究

摘要:功能玻璃材料是无机非金属材料的重要组成,主要包括电子信息玻璃、新能源玻璃、特种玻璃等,是信息显示、半导体、新能源、深海、深空等战略性新兴产业的基础性支撑性材料,已成为我国建设智能社会、低碳社会的重要基石。我国近年来在功能玻璃领域取得一系列重大成就,但仍存在关键材料短板环节突出、跟踪研发、创新资源分散、体系化发展不足等问题。本文按照主干化、体系化研究思路,围绕电子信息玻璃、新能源玻璃、特种玻璃等关键材料的技术、产业、支撑等体系化发展要素,梳理了国外功能玻璃领域先进国家的发展现状,结合我国的发展现状,凝炼了我国功能玻璃关键材料发展面临的主要问题,提出了我国功能玻璃关键材料的发展思路与近期、中期、远期的发展目标,凝练了我国功能玻璃关键材料领域的重点技术发展方向。研究建议:增强关键原材料保障能力,为产业安全发展提供有力支撑;加速启动功能玻璃关键材料创新滚动规划;强化功能玻璃关键材料政策支撑;完善功能玻璃关键材料的绿色低碳与数字化发展。

纳米材料表面化学作用之电子结构原理

摘要:在电子结构层面揭示纳米材料表面化学作用的物理与化学机制、共性规律与普适原理是纳米材料相关领域基础研究的科学目标,然而由于缺乏成熟的研究策略和系统性理论认知框架,相关概念与原理体系长期不完善,导致纳米化学领域的理论认识远落后于实验探索。本文基于作者近年研究成果,介绍基于表面价轨道竞争重构机制的纳米材料表面化学作用在电子结构层面的概念与理论认知体系;基于表面化学吸附电子态与纳米材料能带态间的竞争作用与相互影响模型,对纳米材料表面化学领域中的一些基本共性科学问题给出自洽解答。其一,阐明了纳米材料表面活性与稳定性的对立统一辩证关系的物理根源在于波函数的归一化原理。其二,揭示出尺寸减小普遍增强纳米材料表面化学活性的物理根源有两种机制:一是削弱对表面价原子轨道的束缚强度,二是放大缺陷等其他结构参数的影响效果。其三、建立纳米尺度协同化学吸附(NCC)模型,揭示出配体覆盖度调控纳米材料能带电子态及物理与化学性质的电子结构层面机制与共性规律。其四、揭示纳米材料尺寸(r)、比表面积(S/V)、表面配体及覆盖度(θ)在纳米表面化学作用中电子结构状态变化角度发挥作用的物理意义。

高熵合金耐腐蚀性能研究进展

摘要:传统合金已难以满足越发苟刻的服役环境要求,而高合金具有高强度、高硬度、高韧性和优异的耐蚀性等独特性能,应用前景广阔。简述了高熵合金的历史沿革,综述了高熵合金腐蚀行为研究现状,探讨了合金成分、微观结构、热处理与工况环境等主要因素对高合金腐蚀行为的影响,归纳了高合金在石油天然气钻采、石油炼化以及放射性工业领域的应用现状。高合金作为一种新型材料,其材料特性和功能特性较传统合金具有先进性;设计、制备过程中,通过调控合金元素成分、比例及制备、处理方法,均能影响合金性能,其中合金元素是影响合金耐蚀性能的主要因素(影响合金的相结构、微观结构)。尽管日前高熵合金按需设计和处理已经成为高熵合金发展的主流方向,且在试验阶段已展现出卓越的应用价值,但缺乏在实际工况环境中的应用。最后,从高熵合金的设计方法、制备工艺等方面对高炳合金腐蚀与防护等实际应用问题等进行了展望,以期为高熵合金在含苛刻腐蚀介质环境中的安全应用提供新思路。

高温金属结构材料单晶制备及其研究进展

摘要:高温金属结构材料具有极其突出的高温力学性能、抗氧化能力等,被广泛用于航空航天、武器装备、核电装备等重要领域。其单晶不存在晶界破坏,具有韧-脆转变温度低、高温结构性能稳定等优点,使用温度比相同成分的传统柱状晶提高50~100℃,安全服役寿命得以显著提高,因而高温金属结构材料单晶的制备、取向及其性能已经成为当前高温结构材料领域研究的热点。该综述简要回顾了高温金属结构材料单晶发展历程,重点且系统论述了近年来国内外最新研究进展,分别介绍了气相沉积法、电子束悬浮区域熔炼法、光束悬浮区域熔炼法、等离子弧熔炼法、增材制造技术等制备工艺、原理、优缺点及最新研究现状,总结了不同制备工艺对高温金属结构材料单晶组织、性能的影响及其作用规律,并展望了未来的研究趋势以及应用前景,以期对高温金属结构材料的优化和发展提供借鉴意义。

高密度超长碳纳米管的可控制备:进展与展望

摘要: 碳纳米管因其优异的力学、电学、热学和光学性能,在碳基集成电路、超强超韧纤维、机械储能、柔性可穿戴设备等众多尖端领域拥有广阔的应用前景。碳纳米管的单体结构和微观形貌(如长度、取向度、缺陷浓度、洁净程度等) 对其基础物理性质有显著的影响。在各类碳纳米管中,只有具有宏观长度、低缺陷浓度和高取向度的超长碳纳米管才能充分体现和发挥其本征的性能优势并满足很多尖端领域对其结构和性能的严格要求。实现超长碳纳米管实际应用的关键在于实现其大规模制备,然而其目前的产率远远无法满足应用需求,因而其在高密度、高产率制备方面依然面临很多挑战。深入讨论了超长碳纳米管的生长机理,分析了超长碳纳米管产率低的原因,系统总结了高密度超长碳纳米管的制备方法,并介绍了目前在超长碳纳米管实际应用方面的最新进展。另外,还总结了超长碳纳米管制备领域所面临的科学和技术挑战,并对未来的发展方向进行了深入的讨论。

表面超疏水对摩擦学性能的影响:机理、现状与展望

摘要:超疏水表面由于极端的非润湿特性,在减阻、耐磨、防腐蚀、防结冰和自清洁等领域有着极为广泛的潜在应用。表面粗糙结构和低表面自由能是形成超疏水表面的两个决定因素,也是超疏水表面具有优异的摩擦学性能的主要原因。本文主要对近年来超疏水表面在摩擦学领域的研究进行总结。首先分析了超疏水表面摩擦学的相关理论,然后重点阐述了超疏水表面在摩擦学领域的研究现状,探讨了影响超疏水表面摩擦学性能的因素和作用机理,并对耐磨超疏水表面和超滑表面的摩擦学研究进行了分析。最后提出了超疏水表面摩擦学研究应该关注的重点和方向。本综述旨在引起更多学者对超疏水表面摩擦学研究的关注,对于扩大超疏水表面的应用领域具有重要的理论价值和现实意义。

材料高通量制备与表征技术研究进展

摘要:材料基因组(MCI)技术是近年来出现的一种材料科学研发新理念,代表着当今世界材料科学研发领域的前沿趋势。通过构建快速响应的材料研发新模式,材料基因组技术可大幅度提高新材料研发效率、减少研发成本、推动材料的工程化应用。作为材料基因组技术的关键组成部分,材料高通量实验技术日前已形成了一系列具有代表性的材料高通量制备与表征技术。阐述了高通量实验在材料基因组技术中的地位与作用,回顾了高通量实验的研究发展历程,介绍了薄膜、块体、粉体材料高通量制备技术以及光学、电磁学等材料性能的材料高通量表征技术。最后指出了在新型材料高通量表征设备开发方面的不足,并结合数据与人工智能对材料高通量实验技术的未来发展方向做出展望。

金属纤维多孔材料的应用和研究现状

摘要:金属纤维多孔材料是近年来受到广泛关注和研究的一种复合的结构功能一体化材料,具有良好的导电性、导热性、孔形稳定、可加工、可焊接、容尘量大等优势。综述了金属纤维多孔材料的制备方法,主要介绍了不锈钢、钛及钛合金金属纤维多孔材料在过滤分离、吸声降噪、生物医学、氢能装置等领域的应用和研究现状。

非晶合金焊接研究进展

摘要:非晶合金具有良好的物理和化学性能,但尺寸问题限制了其实际应用,而焊接技术可以突破其应用瓶颈。非晶合金焊接方法可分为液相焊接和固相焊接,两类方法焊接过程中非晶接头形成方式不同,有效避免晶化是获得高质量接头的关键,本文就非晶合金焊接领域的研究进行了系统全面的梳理与归纳,综述了非晶合金/非晶合金焊接、非晶合金/晶态金属焊接的研究现状,重点阐述了不同焊接方法获得完全非晶态焊件的特点与局限,同时本文还综述了非晶合金作为钎料的研究现状,分析了非晶钎料的应用前景,并总结了提高非晶钎料钎焊接头力学性能的方法,继而对非晶合金焊接研究及发展提出了展望。