太阳能电池多晶硅表面激光制绒技术研究进展

摘要:作为一种绿色可持续的清洁能源,可以转化为热能或电能,是传统能源最重要的替代品。多晶硅太阳能电池由于具有较低的成本而被广泛用于光伏发电领域,降低多晶硅片表面反射率是提升多晶硅太阳能电池效率的重要手段之一。本文分析了硅基太阳能绒面微结构的吸光原理,梳理了各类常见制绒方法。在此基础之上,总结了激光制绒的各类加工方法,概括了不同激光加工方法对多晶硅片表面绒面产生的相应效果,其中,激光复合方法制绒的效果普遍优于单一激光制绒。随后从激光加工工艺的角度,分析了激光加工主要参数对绒面微结构形貌的影响:由于不同波长下多晶硅材料的吸收率不同,各加工效果亦不相同;通过调整脉冲激光加工中的重复频率、扫描速度等参数,可影响制绒面凹坑间距进而改变绒面微结构的密度,通过调整功率、单脉冲能量等因素则影响微结构的烧蚀程度或深度;而入射角度、能量分布及脉宽对制绒亦有明显效果。对比发现,各典型绒面微结构的形貌中,V形纹理比U形纹理更能有效地捕捉吸收光线,而二维复合型陷光微结构比单一型陷光微结构吸光性更好。在此基础之上,论述了化学后处理对提升多晶硅片绒面质量的作用体现,表明化学后处理能改善或消除多晶硅片经激光制绒后形成的熔覆层等相关缺陷,经化学后处理后制成的多晶硅太阳能电池效率显著提高。文章最后对太阳能电池多晶硅表面激光制绒技术进行了总结与展望。

锂离子电池用纳米碳材料研究进展

摘要:锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2) 通过异质原子掺杂改善纳米碳材料的电化学性能;(3) 将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来在锂离子电池应用中需要解决的关键问题进行了总结与展望。

高镍层状正极材料失效机理及其改性研究进展

摘要:在现有的商用正极中,富镍层状正极因其高能量密度、较好的倍率性能和合理的循环性能而被广泛应用。目前,Co的价格远高于Ni和Mn,正极材料的研究正朝着高镍“少钴化”甚至“无钴化”的方向推进。本文主要介绍了近年来高镍层状正极材料的研究进展,旨在为未来高镍正极的设计、开发提供重要线索,并推动其实际应用进程。文中首先介绍了高镍正极材料主要失效机理,包括表面/界面降解、阳离子混合、电极-电解质自发寄生反应、气体析出和晶间/晶内开裂。其次,综述了近些年来对高镍材料进行的体相掺杂、表面包覆、成分调整和形貌工程等方面的改性研究和相关进展。最后,对高镍正极材料未来的研究方向和目前的技术挑战进行了展望。

碳中和愿景下中国二氧化碳管道发展战略

摘要:中国在实现碳中和愿景下,对二氧化碳(CO2)捕集、利用与封存技术(CCUS)有巨大需求,而CO2运输是CCUS产业链的重要环节之一,因此必将依托于长距离的 CO2管道及其配套基础设施建设。由于中国CO2管道建设起步晚、规模小,相关技术与配套政策相对滞后,亟需对未来公共基础设施的CO2管网进行系统规划并开展相关技术攻关。为此,在分析中国CO2碳源和封存空间分布特点的基础上,基于规模化商业发展时序规律,提出了三阶段管道发展路径,并从管输工艺、安全评价、材料与设备、完整性等方面分析了中国CO2管输技术的发展现状,提出了相应的对策和建议。研究结果表明:①随着全球CCUS产业发展提速,CO2管道运输作为CCUS重要环节和基础设施,其建设将增速;②中国CO2排放源和封存空间地理分布不均,东、中部地区碳排放量占总排放量的65.8%,CO2驱油和地质封存是实现大规模CO2管道输送的主要需求。结论认为:①中国CO2管道三阶段发展路径为碳达峰前布局建设百万吨级超临界输送CO2管道示范项目,碳达峰后以盆地为中心构建区域千万吨级CO2管道运输网络架构,碳中和前构建区域间的干线管道,形成输送规模达到10×108t级,总里程约6×104km的国家输碳管网;②应开展CO2陆地、海洋管道全相态输送技术与装备攻关研究,完善国内管道输送技术链并推动管输行业法规体系不断健全,助力示范工程的落地实施。

铜单原子催化剂的制备及在电化学能源转化的应用

摘要:电化学能源转化作为一种清洁高效的能源转化方式,是实现“双碳”目标的重要技术途径之一,而开发高性能催化剂,是提高电化学能源转化效率的关键手段。单原子催化剂兼具均相催化剂原子利用率高和非均相催化剂稳定易分离的优势, 在电催化能源转化领域展现出巨大的应用前景。铜(Cu)具有电导率高、 储量丰富、 环境友好的优势, 在电化学能源转化中占据重要地位。本文总结了 Cu单原子催化剂(SACs)的制备策略,如高温热解法、湿化学法、化学气相沉积法、电化学法等,介绍了该类材料在电催化 CO2还原反应(CO2RR)、氧还原反应(ORR)、电解水析氢反应(HER)及N2电化学还原(NRR)等电化学能源转化领域的研究进展和技术应用。最后,总结了Cu单原子在电催化领域所面临的挑战,并对其未来的应用前景进行展望。

石墨烯纳米筛: 基础和应用研究

摘要:石墨烯纳米筛材料是当前科技前沿中一种新型二维多孔材料,其平面多孔结构有利于电解质离子的纵向传输,缩短了离子传输路径, 有效避免了传统石墨烯材料普遍存在的问题,如π-π堆叠造成活性面积低、纵向传输性能差、离子传输路径长和电解液不易浸润等,在能量存储与转换领域中表现出比传统石墨烯基材料更为优异的性能。本文综述了近几年来各种结构可定制、结构/组分复杂性高、形态可控制、电化学性能增强的石墨烯纳米筛材料的合理设计和合成的研究进展,着重讨论了石墨烯纳米筛的结构设计对能源存储与转换方面的性能影响,期望为高性能能源存储与转换方面进一步的创新工作提供参考。

车载高质量密度固态储氢材料研究进展

摘要:高密度储氢是制约氢燃料电池汽车发展的技术瓶颈之一,相较于高压气态和低温液态等储氢方式,固态储氢体积储氢密度高、安全性好,发展前景良好。分析和总结了燃料电池电动汽车的应用对车载固态储氢的技术要求,包括固态储氢材料的储氢密度、吸放氢动力学、热力学、可逆性、循环寿命、成本以及安全性等;介绍了氢化镁、硼氢化物、铝氢化物、氨基化物等高密度储氢材料的储氢原理及其优缺点,综述了纳米化改性、催化剂改性、元素掺杂改性和构筑复合储氢体系等改善高密度固态储氢材料性能方法,重点评述了采用不同改进措施的氢化镁、硼氢化物、铝氢化物、氨基化物的研究进展。通过分析对比不同体系以及不同改进措施下的固态储氢材料及其性能,总结出研发采用轻质多孔框架材料并配合高效轻质催化剂的复合材料,是改善固态储氢性能的有效途径。

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。

Pd基二元合金膜应用研究进展

摘要:Pd基合金膜对氢气具有唯一渗透性和高渗透率,在氢气生产、应用、回收、探测等领域有着广阔的应用前景。PdAg,PdCu,PdAu,PdPt,PdRu为近年来Pd基二元合金膜的研究热点,对它们的研究重心也逐渐由提高合金膜的氢渗透性能,转向了对循环稳定性、高温稳定性、抗毒化性能及膜反应转化率等综合性能的优化。其中PdAg与PdCu合金膜的技术成熟度高,已在具有商业价值的重整制氢反应器及氢气净化器中投入使用。PdAu,PdPt,PdRu合金膜在实验研究中的优异表现,也展示了其在商业应用中的巨大潜能。介绍了上述几种Pd合金膜在重整制氢、脱氢加氢反应器及氢纯化器中的最新研究进展,讨论了其在实际应用中面临的问题与挑战, 提出了不同Pd合金膜可适应的服役条件及可行的优化方案。最后对Pd合金膜开发与应用的发展趋势作了展望,指出了Pd合金膜抗毒化性能的提升仍然是未来研究的重点。

氢的大规模制备及在钢铁行业的应用和展望

摘 要:中国钢铁产量占世界总产量的一半以上,随着全球“碳达峰”“碳中和”的推进,钢铁行业面临着巨大的低碳发展挑战。氢能被认为是一种低碳能源,“以氢代碳”是实现源头降碳和流程低碳转型的重要途径之一。重点介绍氢气基本性质、制备来源与碳排放的关系,探讨煤制 氢、天 然 气 制 氢、甲醇制氢和电解水制氢4种主流大规模制氢路线的技术特性、发展现状、制备成本和发展方向