石油焦锂离子电池负极材料电化学性能研究

摘要:负极材料是决定锂离子电池性能的关键因素,人造石墨是重要的锂离子电池负极材料。石油焦的热膨胀系数低,空隙度低,灰分、硫、金属元素含量低,导电率高,易石墨化。此次研究选择3 种普通石油焦,并通过石墨化制备人造石墨。对3种石油焦原样和石墨化样品进行分析表征,比较其各种性能,研究石油焦石墨化后的变化,并通过电化学分析验证石油焦石墨化后其性能是否达到商用锂电池负极材料水平。实验结果表明:在2750 ℃石墨化处理后,相较于原石油焦样品,3种石墨化样品结构重排,拥有更明显的规整层状结构;含碳量提升,其他例如氢、氧等杂元素和金属元素含量下降;均显现出较低的电极电位和稳定的充放电平台,首次库伦效率分别为85.00%、78.20%、82.96%。经过150次循环后,比容量分别保持在273.00、259.00、226.20mA/g,库伦效率接近100%,是锂离子电池负极材料的潜在前驱体。

储氢技术研究现状及进展

摘要:储氢环节是连接氢生产到应用的桥梁,也是高效利用氢能的基础。高压气态储氢技术最成熟、应用最广泛,研制轻质、高压、耐腐蚀性强、稳定性好的储氢容器将是未来高压储氢的研发热点。固态储氢是利用固体材料吸附方式实现氢的存储,主要包括金属材料、复合氢化物、碳基材料、有机框架储氢材料、无机多孔储氢材料等。从储能密度角度看,低温液态储氢是一种十分理想的储氢方式,但也存在能量损失大、成本高昂等问题。有机液态储氢具有储氢密度大、安全性好、载体可循环使用等显著优点,被认为是最有希望实现大批量、远距离氢储运的重要方式之一,甲基环己烷(MCH)、二苄基甲苯(DBT)、N-乙基咔唑(NEC)、甲醇/甲酸等是当前有机物储氢介质的研究热点且具有商业化前景。目前有机液态储氢还存在脱氢效率低、能耗大、氢纯度不足等问题,大部分技术仍处于研究或初期示范阶段。短期内高压气态储氢仍是储氢方式的主流选择。中期内发展的重点是有机液态储氢和固态储氢,低温液态储氢主要应用在大批量、长距离的特殊储运场景。长期来看,融合多种储氢方式的优点,开发集成式耦合储氢技术是未来发展的关键,高效、长寿命、经济性好的储氢介质/催化剂体系是未来储氢技术的研究重点。

柔性、可拉伸变形微型热电器件的设计与集成

摘要:在能源匮乏、环境污染严重的今天,研发可循环利用、环境友好的新型能源材料与器件具有重要意义。热电材料可直接实现热能与电能的相互转换,为解决这一问题提供了新的途径。特别是,近年来由于柔性热电器件展现出自供电、可穿戴等优势,受到了人们的高度重视。本工作通过引入聚二甲基硅氧烷(polydimethylsiloxane,PDMS)基底,利用单壁碳纳米管(single-wall carbon nanotube,SWCNT)/Bi2Te3热电复合薄膜材料优异的热电性能和柔韧性,设计制作了一种可拉伸变形的三维拱形结构的微型热电发电器件。该器件充分利用薄膜材料面内最佳热电性能方向,通过器件内外温差获得热-电性能转换,在电极两端产生电势差,实现发电。该微型柔性热电器件在温差为4 K时,输出电压为4.8mV,最大输出功率达2.6×10-9 W,功率密度为3.9×10-9 W/cm2,器件的最小弯曲半径为3mm。这种微型柔性热电器件的制备工艺简单易行、成本低廉,为柔性热电薄膜发电器件的研制提供了新途径。

集成光伏转换与储能功能的光超级电容器研究进展

摘要:光超级电容器是一种将光伏转换装置与超级电容器相结合的集能源收集与存储于一体的设备,其双重功能使其在未来柔性可穿戴以及便携式设备上的应用具有巨大潜力。介绍了基于第三代太阳能电池的各类光超级电容器的发展历史和近几年来的相关代表性研究成果。阐述了构建性能更佳的光超级电容器所面临的问题和挑战, 并给出了相应的措施及建议。最后对该领域未来的研究方向和机遇进行了展望。

液晶分子优化给体材料组装制备高性能有机太阳能电池

摘要:活性层形貌优化是实现高效、稳定的体异质结有机太阳能电池(OSC)的关键,添加剂工程被广泛用于优化OSC活性层的膜形貌. 基于此,本文工作提出了一种利用具有简单结构的液晶分子4-氰基-4'-庚基联苯(7-CB)作为添加剂优化给体聚合物(PM6)在共混膜中聚集行为的策略. 通过掠入射广角X 射线散射、原位吸收光谱及分子动力学模拟等表征发现,7-CB通过与PM6 的烷基侧链之间的范德华力和CH/π相互作用诱导PM6 规整排列,增强了PM6 之间的相互作用,提高了活性层薄膜的结晶度. 得益于此,无任何后处理的活性层薄膜中电荷传输得到改善,电荷重组被大幅抑制. 基于7-CB处理的PM6:L8-BO制备的硬质和柔性二元OSCs效率分别从15.41%和14.90%提高到18.01%和17.26%.

“双碳”目标下我国新能源行业关键金属供应分析

摘要:风电、光伏发电等新能源行业是支撑实现“双碳”目标的关键领域,我国风电、光伏发电的装机规模居世界首位,保障关键金属材料供应、进行更精准的新兴固废管理具有重要意义。本文基于我国风电、光伏发电行业的历史数据和规划目标,设定了不同的发展情景;应用风电、光伏发电设备的寿命分布模型,评估了我国新能源行业关键金属的需求、废弃和供应情况;重点识别了银、铜、镓、银、钢铁、钕等金属的供应压力,为2060年前构建绿色低碳能源发展格局提供了基础支撑。在基准情景下,2035年的风电、光伏发电行业退役量分别为4.6 GW、28.3 GW;2035年、2060年的风电、光伏发电设备退役量(按质量计)分别为2.54×106 t、1.048×107 t。从我国新能源行业的关键金属供应压力来看,2030—2060 年,钢铁为低风险(≤5%),钕为中高风险(25%~50%),铜、银为高风险(50%~100%),镓、铟因需求峰值过高而被列为极度危险等级。改善新能源产业供应链的安全性和多样性,既需要确保金属矿产资源的可持续供应,也需要开展回收循环和高效利用;为此建议将风电、光伏发电退役设备按照废弃电器电子产品进行管理,将风电、光伏发电企业纳入《固定污染源排污许可分类管理名录》,加快完善分布式新能源固废回收体系,切实提高新兴固废回收技术水平。

二维MXene材料在太阳能电池和金属离子电池中的研究进展

摘要: MXene是一种新型二维材料,具有导电性髙、表面官能团丰富、层间距和能带结构可调等特点,从而在新能源器件中拥有重要的研究价值。综述了MXene在太阳能电池和金属离子电池中应用的相关进展。在太阳能电池中,基于MXene高电导率、高透明度和功函数灵活可调的特点,讨论了其在电极和载流子传输层中的相关应用研究,并对MXene功函数调整的策略进行了总结。在金属离子电池中,基于MXene独特的二维层状结构、优异的力学性能和良好的导电性,讨论了MXene作为负极材料以及与碳纳米材料、金属氧化物和硅组成的复合材料对电化学性能的提升作用,并对MXene在正极材料、集流体以及隔膜中应用也进行了介绍。最后对MXene的下一步发展进行了展望。

水系锌离子电池性能优化的研究进展

摘要:金属Zn是制备水系可充电电池的理想材料,同时,水系锌离子电池在大规模储能领域具有巨大的发展潜力。但金属 Zn作为电极材料还存在不可控的锌枝晶生长和副反应发生等问题,限制了锌离子电池的库仑效率,严重阻碍了锌基电池的实用化。鉴于此,本文阐述了近年来对水系锌离子电池性能优化策略的研究成果,并从人工保护层、引入添加剂、金属有机骨架(MOF)基作主体、沉积法、隔膜改性等方面对锌离子电池性能优化策略的研究进行分类总结,以期为广大研究者提供相关方面的理论指导。

质子交换膜燃料电池核心基材性能研究进展

摘要:由于对清洁能源的需求不断扩大,质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)作为一种环保、可靠的新能源电池装置越来越受关注。但是PEMFC现在还有很多问题亟待解决,比如:核心基础材料制造困难、催化剂稳定性低、电池气-液管理等问题。气体扩散层是PEMFC中最重要的部件之一,通常包含碳纸支撑层和微孔层。为了达到PEMFC高性能材料和电池运行的稳定性,本文综述了近年来气体扩散层制备、结构模拟、双极板制备、催化剂层制备以及气-液传输的研究,以期为PEMFC的未来发展提供参考。

固态电池关键材料体系发展研究

摘要:固态电池技术是发展兼具高能量密度、高安全性、长寿命和低成本的下一代电池的重要保证,当前全球主要国家及地区均在加快布局固态电池研发和产业化。本文从固态电池关键材料的技术体系、产业体系和支撑体系3 个方面着手,综述了国际固态电池关键材料体系的发展现状,分析了美国、欧洲、日本、韩国等国家和地区的固态电池技术发展路径、产业规模和支撑体系建设情况,梳理了我国固态电池关键材料体系的发展现状并提出了发展目标。研究发现,我国固态电池正处于推广发展期,在关键原材料、关键科学技术瓶颈突破、规模化量产及产业化应用等方面面临挑战。研究建议,坚持分步发展固态电池的总体策略,设立国家级固态电池发展规划和重大科技专项,推动固态电池技术研发机构建设,促进固态电池市场化应用及产业转型,优化固态电池生态环境建设,实现我国固态电池产业领跑世界。