半导体用高纯金制备技术及应用研究进展

摘要:综述了目前制备高纯金的各种方法的原理及工艺,并对其优缺点进行了分析。化学还原分离法效率高、周期短,但酸耗大、污染严重;熔融氯化法对原料适应范围广,但存在氯化过程复杂、工艺难于精准控制和产品质量不稳定等不足;溶剂萃取法效率高、产品质量稳定,但试剂消耗大、有机污染严重和易燃易爆;电解法具有成本低、除杂效果好、产品纯度稳定性强及环境污染小的优点,但原料适应性相对较差、生产周期相对较长且会积压金。高纯金具体应用形式为键合用金丝、溅射靶材及高纯度金基合金,涉及电子、半导体及航空航天等领域。

锆合金表面高温抗氧化涂层的研究进展

摘要:锆合金因其热中子吸收截面小、热膨胀系数低,以及与UO2良好的相容性而成为当前核反应堆中主要的构件材料。然而,在高温蒸汽氧化环境中,锆合金会快速氧化失效,并产生大量氢气,从而引发氢爆炸。为了提高核反应堆的安全性,对锆合金表面进行强化形成高温抗氧化防护涂层,是解决这一难题的有效途径。本文介绍了锆合金表面高温氧化行为,重点综述了高温抗氧化涂层(包括金属涂层、陶瓷涂层以及复合涂层)的氧化行为和失效机理,对比分析了不同锆合金表面涂层高温氧化性能。另外,还对锆合金表面高温抗氧化涂层的多元素成分设计、制备方法和梯度结构设计的发展方向进行了展望。

难熔金属及金属碳/氧化物粉体制备技术研究进展

摘要:难熔金属及金属碳/氧化物具有高熔点、高温稳定性、强耐腐蚀性等优异特性,在燃气叶片、电子管、火箭引擎、切削刀具、高温热元件、涡轮喷嘴等高温高压、强腐蚀性等环境下被广泛应用。本文介绍了难熔金属及金属碳/氧化物粉体的应用,梳理了难熔金属及金属碳/氧化物粉体的机械法、还原法、燃烧法、溶胶-凝胶法、水热法、微波法、沉淀法、热解法、爆炸法和等离子体法等制备工艺,并比较各种工艺在制备难熔金属及金属碳/氧化物粉体过程中的优缺点;重点评述难熔金属及金属碳/氧化物Mo、W、Ta、WC、ZrC、TiC、CeO2、ZrO2、Y2O3 等粉体的研究现状,并展望了难熔粉体的发展方向,为难熔粉体的制备工艺和应用提供参考。

TZM 钼合金箔材退火行为研究

摘要:TZM 钼合金具有比纯钼更优异的力学性能和更高的再结晶温度,适用于更广泛的应用场景,TZM 箔材可以替代纯钼箔材应用于电子等领域.通过研究TZM 箔材经过不同退火温度和高温短时退火热处理的显微组织和力学性能,发现900℃的退火可以使箔材完成去应力,并出现最大延伸率;高温短时退火提升了材料的抗拉强度,2次高温短时退火后箔材具有最大强度和较高的延伸率;杯突测试显示出与力学性能类似的规律,900℃退火使材料具有最大杯突值3mm,经过2次高温短时退火后杯突值提高23%.

磷化铟量子点及其电致发光研究现状和挑战

摘要:量子点作为一种理想的发光材料,一直以来引起了科学家和工业界的广泛关注,推动了生物成像、照明、显示等领域的发展。随着生态环境保护的意识逐渐增强,磷化铟量子点(InP QDs)作为镉基量子点的最好替代者之一,受到了广泛的关注:一方面,InP QDs具有与镉基量子点相媲美的发光和光电性质;另一方面,其发光光谱范围可覆盖整个可见光区,且合成工艺与镉基量子点共通。然而,因为InP QDs与传统镉基量子点相比,在元素价态、核壳晶格匹配性、反应动力学过程等方面具有特殊性,其合成化学的发展还不成熟,限制了其光电应用的研究进程。本文结合量子点显示的发展现状和未来需求,针对InP QDs体系进行了综述,通过分析其研究现状,分析其发展问题和挑战,并对其进行了展望,期望为量子点及其电致发光器件的进一步探索研究提供一些启示和帮助,推动无镉、低毒、高色纯度量子点体系的发展。

PtCo合金电催化剂在燃料电池氧还原催化中的研究现状与进展

摘要:质子交换膜燃料电池(PEMFC)具有高效、低温、环保等优点,是解决能源短缺和环境污染双重问题的潜在方案。然而,其阴极氧还原反应(ORR)中迟缓的动力学过程不得不依赖稀缺昂贵的Pt基催化剂,这阻碍了PEMFC技术的进一步发展和应用。为了降低成本并保证高效的催化性能,近年来研究人员已开发了多种技术策略,引入过渡金属与Pt合金化为主要策略之一,特别是PtCo双金属催化剂,它表现了更优异的ORR催化性能。本文综述了PtCo合金催化剂在PEMFC氧还原催化中的最新进展和现状,总结了催化剂组分控制、粒径调控、晶面调控、掺杂等调控策略对燃料电池催化活性的影响,详细介绍了最有前途的PtCo合金结构,如多面体、核壳、纳米框架、有序金属间结构等PtCo合金催化剂,并对催化剂载体研究进行了讨论,最后指出了PtCo合金催化剂在其应用中存在的挑战以及未来前景。

铂银与铂金合金纳米材料研究进展

摘要:Pt-Ag和Pt-Au合金具有高强度、高弹性、高催化活性、高稳定性等优点,在现代化学工业、电气和电子工业等领域有重要的应用。近年来,Pt-Ag和Pt-Au 合金特别是纳米材料在新能源、信息技术、环境保护和生物医药领域的应用研究有了飞速发展。本文介绍了Pt-Ag合金在电催化技术、光催化技术、环保、生物医药、化工等领域和Pt-Au合金在新能源、传感器技术、环保、生物医药、化工等领域的应用研究进展,并展望了其发展方向。

WC含量对激光熔覆CoCrFeNiTi高熵合金涂层组织及耐腐蚀性能的影响

摘要:为了延长脱硫浆液循环泵叶轮的寿命,采用激光熔覆技术在脱硫浆液循环泵叶轮的母材30CrMnSiA钢表面制备了WC增强CoCrFeNiTi-WCx(x=0,5,10,15,20,质量分数,%)高合金涂层,研究了WC含量对涂层的显微组织、力学和耐蚀性能影响。研究发现 CoCrFeNiTi高熵合金涂层相组成为fcc(Fe-Ni)、bcc(Fe-Cr)、Laves(CoTi2)和AB-type(Ti的化合物),随着WC含量增加,Laves相衍射峰强度增强,且生成了新相碳化物(WC、TiC、Cr7C3和Fe3C)。CoCrFeNiTi高合金涂层主要组织为底部的胞状晶和顶部的等轴枝晶,随着WC含量增加,涂层组织主要为等轴枝晶,且晶粒尺寸逐渐细化。WC的加入提高了涂层的性能,其中CoCrFeNiTi-20%WC涂层硬度(HV0.2)最大,为6419MPa,且摩擦系数(0.664)和磨损率(1.3×102μm(s-N)-1)最小,耐磨性能最好,磨损机制主要为轻微的黏着磨损和磨粒磨损。此外,随着WC含量的增加,涂层表现出更低的腐蚀速率和腐蚀电流。其中,CoCrFeNiTi-20%WC涂层腐蚀电流最小,耐腐蚀性能最好。

镍基高温合金表面冲击强化机制及应用研究进展

摘要:为满足不断攀升的两机涡轮动力系统的快速发展,表面冲击强化技术在涡轮转子用高温合金表面强化的应用及相应机制的研究受到了广泛关注。然而,高温合金表面硬化层在高温服役环境下的回复、再结晶行为难以避免,由此引起的表面强韧化、抗疲劳效果的退化,成为制约表面冲击强化技术在先进高温合金关键部件深入应用的瓶颈。本文总结了近年来镍基高温合金表面冲击强化机制及应用研究进展,分析了表面冲击强化对镍基高温合金表面强韧性及抗疲劳的作用规律,探究了高温合金表面冲击硬化层在高温及长期时效过程中的显微组织、微结构演化及其对高温稳定性的作用机理。以期为发展镍基高温合金表面冲击强化、提高两机涡轮转子疲劳抗力提供基础。

镍基单晶高温合金的研发进展

摘要:单晶高温合金是先进航空发动机、燃气轮机的核心热端材料,单晶叶片要求高、制造工艺复杂、容错空间小,在高温、复杂应力、氧化和热腐蚀等苛刻环境下工作。本文概述了近几年镍基单晶高温合金在合金研制、组织性能演化和表征、近服役环境下力学行为评价以及叶片制造工艺等方面的研发进展,并简单介绍了难熔高熵合金等“下一代”新型高温结构材料的研发情况。