基于无颗粒银墨水制备柔性透明导电薄膜

摘要:以酒石酸银作为前驱体,1,2-丙二胺为络合剂,乙醇为溶剂制备无颗粒酒石酸银导电墨水。以丙烯酸乳液为原料制备模板,利用模板法和旋涂工艺法,在PET基材上制备透明导电银网格薄膜。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱仪(FTIR)等方法对制备的导电墨水和透明导电银网格薄膜进行表征。结果表明,该方法实现了银网格完全嵌入在裂纹模板凹槽中,通过调控模板的线宽大小及网孔数量可获得透过率为82%、方阻为28Ω/sq的银网格透明导电薄膜。该导电薄膜的薄膜电阻经过100 次弯曲后没有明显的变化,可以有效克服ITO薄膜柔性差的缺点。

半导体用高纯金制备技术及应用研究进展

摘要:综述了目前制备高纯金的各种方法的原理及工艺,并对其优缺点进行了分析。化学还原分离法效率高、周期短,但酸耗大、污染严重;熔融氯化法对原料适应范围广,但存在氯化过程复杂、工艺难于精准控制和产品质量不稳定等不足;溶剂萃取法效率高、产品质量稳定,但试剂消耗大、有机污染严重和易燃易爆;电解法具有成本低、除杂效果好、产品纯度稳定性强及环境污染小的优点,但原料适应性相对较差、生产周期相对较长且会积压金。高纯金具体应用形式为键合用金丝、溅射靶材及高纯度金基合金,涉及电子、半导体及航空航天等领域。

锆合金表面高温抗氧化涂层的研究进展

摘要:锆合金因其热中子吸收截面小、热膨胀系数低,以及与UO2良好的相容性而成为当前核反应堆中主要的构件材料。然而,在高温蒸汽氧化环境中,锆合金会快速氧化失效,并产生大量氢气,从而引发氢爆炸。为了提高核反应堆的安全性,对锆合金表面进行强化形成高温抗氧化防护涂层,是解决这一难题的有效途径。本文介绍了锆合金表面高温氧化行为,重点综述了高温抗氧化涂层(包括金属涂层、陶瓷涂层以及复合涂层)的氧化行为和失效机理,对比分析了不同锆合金表面涂层高温氧化性能。另外,还对锆合金表面高温抗氧化涂层的多元素成分设计、制备方法和梯度结构设计的发展方向进行了展望。

钨合金的强韧性研究进展

摘要:钨及其合金具有高熔点、高密度和优异的抗等离子体溅射侵蚀能力等优点,尤其是在高温服役环境下,还具有优异的综合力学性能,是航空航天、武器装备、核工程等不可或缺的关键材料。但在极端高温服役环境下钨合金面临强化相尺度大、分布不均,导致钨合金高温强韧性不足的问题。为解决上述难题,国内外学者开展了钨合金的强韧性研究,通过调控材料成分与组织结构提高钨合金的力学性能。本文主要从形变强化、固溶强化和弥散强化3个方面阐述钨合金的组织调控与强韧化机制,并对钨合金的未来发展趋势与未解决的问题进行展望。

难熔金属及金属碳/氧化物粉体制备技术研究进展

摘要:难熔金属及金属碳/氧化物具有高熔点、高温稳定性、强耐腐蚀性等优异特性,在燃气叶片、电子管、火箭引擎、切削刀具、高温热元件、涡轮喷嘴等高温高压、强腐蚀性等环境下被广泛应用。本文介绍了难熔金属及金属碳/氧化物粉体的应用,梳理了难熔金属及金属碳/氧化物粉体的机械法、还原法、燃烧法、溶胶-凝胶法、水热法、微波法、沉淀法、热解法、爆炸法和等离子体法等制备工艺,并比较各种工艺在制备难熔金属及金属碳/氧化物粉体过程中的优缺点;重点评述难熔金属及金属碳/氧化物Mo、W、Ta、WC、ZrC、TiC、CeO2、ZrO2、Y2O3 等粉体的研究现状,并展望了难熔粉体的发展方向,为难熔粉体的制备工艺和应用提供参考。

TZM 钼合金箔材退火行为研究

摘要:TZM 钼合金具有比纯钼更优异的力学性能和更高的再结晶温度,适用于更广泛的应用场景,TZM 箔材可以替代纯钼箔材应用于电子等领域.通过研究TZM 箔材经过不同退火温度和高温短时退火热处理的显微组织和力学性能,发现900℃的退火可以使箔材完成去应力,并出现最大延伸率;高温短时退火提升了材料的抗拉强度,2次高温短时退火后箔材具有最大强度和较高的延伸率;杯突测试显示出与力学性能类似的规律,900℃退火使材料具有最大杯突值3mm,经过2次高温短时退火后杯突值提高23%.

激光增材制造相变诱导型高熵合金的研究进展

摘要:高熵合金是以4种及以上元素为主元的合金,热力学上存在高熵效应,动力学上呈现迟滞扩散效应,晶体学上表现为晶格畸变效应,使用时展现出鸡尾酒效应,具有良好的力学性能和耐腐蚀性。相变诱导塑性高熵合金通过在变形过程中发生马氏体相变,延迟了裂纹的产生,同时提高了金属的加工硬化率,解决了塑性-强度难题,具有极大的研究潜力和应用前景。铸造高熵合金存在偏析严重、晶粒粗大等缺陷,成形样品力学性能差。增材制造具有局部熔池快速凝固的特点,成形的高熵合金成分均匀、晶粒细小,力学性能远高于铸件。本文阐述了增材制造成形相变诱导塑性高熵合金的显微组织、力学性能、组织演变、耐蚀性等方面的研究进展,并展望了未来的研究方向。

基于机器学习的激光粉末床熔融工艺参数优化、过程监测和服役寿命预测的方法论

摘要:激光粉末床熔融工艺(LPBF)因成形精度较高、制造周期短,成为增材制造的主流方法之一,但其制造工艺的可重复性、生产过程的可解释性和成形构件的可靠性仍面临重大挑战。LPBF成形过程涉及的参数众多袁不同工艺参数的选择会导致构件内部产生不同类型的微观/宏观缺陷,进而影响构件的服役性能。因此明确工艺参数、缺陷和性能三者之间的联系是当前激光粉末床熔融制造的热点与难点。作为大数据与人工智能发展到一定阶段的必然产物,机器学习方法为有效处理高维物理量之间的复杂非线性关系提供了契机,在增材制造过程中工艺参数优化、缺陷监测和性能预测等方面得到持续关注。本文介绍了常用的机器学习(ML)模型,总结了LPBF中ML的输入信息,重点分析了数据驱动和物理驱动ML模型在LPBF各领域的应用,最后指出当前ML的局限性,并探讨了其发展趋势和技术前景。

真空蒸馏分离杂质提纯金属钪研究

摘要: 采用Miedema混合焓模型进行热力学计算,获得了金属钪中各元素的饱和蒸气压、杂质元素与Sc的分离系数以及蒸馏挥发速率,分析了真空蒸馏提纯金属钪过程中Fe、Al杂质的分离特性及规律。根据理论分析结果,在蒸馏温度为1 550~1 700 ℃、真空度小于10-3 Pa的条件下进行金属钪的真空蒸馏提纯实验。计算结果表明,杂质Mg、Ca、Mn、Ni与主元素Sc的饱和蒸气压差值较大,易于真空蒸馏分离,而饱和蒸气压与Sc相近的Fe和Al杂质难分离;在1 550~1 700 ℃范围内杂质Fe、Al与Sc的分离系数均远小于1,且随着蒸馏温度的升高逐渐增大,不利于Sc与Fe、Al分离;随着蒸馏温度的升高,Sc与杂质Fe和Al的挥发速率均逐渐增大,且杂质随其含量升高挥发速率进一步增大。实验结果表明真空蒸馏可有效去除金属钪中的杂质Fe和Al,使其残留在渣相中。

高纯钽靶材的制备及其织构研究

摘要: 根据国内外文献分析了晶粒度和织构对钽靶材溅射产出率的影响,认为晶粒细小且均匀的钽靶材具有较高的溅射产出率。采用高纯钽锭通过大变形锻造并结合轧制和真空退火制备钽靶材,并借助金相显微镜和EBSD 技术对钽靶材的微观组织、晶粒度和织构组成进行了分析。结果表明:通过增大铸锭锻造变形量可使钽靶材在厚度方向获得细小而均匀的晶粒,同时织构在厚度方向均匀地随机分布。