激光增材制造高熵合金强化机制的研究进展

摘要:随着航空事业的飞速发展,对合金材料的性能提出了更高要求。在传统合金材料性能提升空间逐渐受限的背景下,高熵合金凭借其独特的多主元设计,不仅在力学性能上表现优异,还在耐腐蚀、耐高温等方面展现出其独到之处,成为最具发展潜力的材料之一。激光增材制造技术为高熵合金的设计与制造提供了新的工艺技术途径,确保了成形件具有结构致密、组织均匀等优势。本文总结了激光增材制造高熵合金强化机制方面的研究进展,列举了包括应变诱导孪晶强化、变形诱导相变强化、细晶强化、固溶强化以及第二相强化等机制的典型案例,重点阐述了工艺特性对强化机制的显著影响。结果表明,激光增材制造技术的工艺特点能够增强高熵合金强化机制的效果,进而提升合金的力学性能。

铬污染场地强化微生物修复技术研究进展

摘要:铬是一种具有致癌性、致畸性的有毒金属元素,铬矿冶炼、镀铬和皮革制造等人类活动使大量铬释放到环境中, 造成严重的环境污染,引起各国学者的广泛关注。首先对国内外铬污染的现状和铬在土壤、水和大气环境中分布特征进行了介绍;归纳了pH、氧化还原电位、氧化物/氢氧化物、有机质和微生物影响下铬在土壤中的迁移转化规律;总结了微生物修复主要依靠生物吸附、生物累积和生物转化,通过细菌和真菌等微生物吸附和还原Cr(Ⅵ);在此基础上归纳了矿物材料、固定材料和刺激剂在强化微生物修复方面的研究进展。目前常用的铬修复微生物是假单胞菌属、芽孢杆菌属和希瓦氏菌属等细菌及霉菌和酵母菌等真菌。铁基材料和碳基材料通过促进微生物的胞外电子传递过程加速Cr(Ⅵ)的还原;膨润土、生物炭等材料通过为微生物提供合适的生存空间;海藻糖等刺激剂通过改善土壤环境,促进微生物生长,强化微生物修复能力。强化微生物修复技术能够增强Cr(Ⅵ)还原效率,适应恶劣土壤环境,已逐渐成为目前研究的重点。

基于专利分析的钽粉制备技术现状研究与趋势分析

摘要:以德温特创新索引专利数据库中1992—2021年间的钽粉专利为研究对象,利用科学计量工具Citespace绘制了钽粉专利科学知识图谱,并对钽粉专利现状和发展趋势进行了分析。结果表明,全球钽粉专利申请量从2011年开始大幅增加,其中中国的专利申请占比最大。然而,以高被引专利为代表的高技术门槛和高利润钽粉制备专利主要被欧美企业所持有,显示出了欧美国家在钽粉研发实力上的领先优势。中国未来需在以高容化、高压和高可靠性电容器用钽粉为代表的产品方向进行突破。

共晶高熵合金十年发展回顾(2014—2024):设计、制备与应用

摘要:共晶合金是以凝固过程发生共晶反应命名的一类多相合金,具有悠久的历史,是应用最广的铸造合金。高熵合金是多主元的新型合金,自2004 年提出以来取得了迅速发展。共晶高熵合金结合了共晶合金和高熵合金的优点,于2014 年首次公开报道。经历十年发展,共晶高熵合金已经快速经历了成分设计、组织/性能调控、大规模制备与应用几个阶段。共晶高熵合金独特的微观组织特征和优异的综合性能使其在多个领域展现出广阔的应用前景,成为近年来备受关注的新型合金材料。本文对过去十年共晶高熵合金的成分设计、制备和应用进展进行了回顾,并对未来发展趋势进行了展望。

贵金属Pt掺杂对MgH2/MoS2异质结脱氢性能的影响

摘要: 二维材料中二硫化钼(MoS2)被认为是一种很有前途的高效、低成本析氢反应(HER)催化剂,并且已经被证实能够增强氢化镁(MgH2)的脱氢性能,但是对其深层机理仍然缺少认识。在密度泛函理论(DFT)的基础上,通过第一性原理计算方法在理论上进行研究,构建了MgH2/MoS2的异质结模型,深入探究MoS2对MgH2脱氢性能的影响,并且引入贵金属Pt掺杂进一步改善复合结构的脱氢性能。研究表明,MoS2能够增强MgH2的脱氢热力学性能,MgH2/MoS2 异质结的脱氢性能增强是由于MoS2的引入导致MgH2表面发生大量电荷转移削弱了Mg—H键相互作用以及带隙明显变窄。此外在Pt原子的掺杂使得MgH2/MoS2异质结层间距增大利于H-的迁移,同时进一步的缩小带隙宽度,全面提升了脱氢热力学和动力学性能。

超细钼粉制备技术的研究现状与进展

摘要:金属钼因低的热膨胀系数、高温强度、高弹性模量等特性,广泛用于航空航天、军工、石油化工以及核工业等尖端行业,是推动高科技领域发展不可或缺的材料。钼粉作为钼制品的基础原料,其物化性质与钼制品的性能密切相关。相比于普通钼粉,超细钼粉具有更大的比表面积、更高的活性以及更低的烧结温度。目前制备超细钼粉的方法主要有热还原法和热分解法,热还原法通过调整还原工艺达到阻止晶粒长大的目的;而热分解法的发展主要涉及到装备的升级改造与工艺的优化完善。本文着眼于超细钼粉的制备工艺、反应机理以及产物状态,重点分析了典型工艺的发展历程和技术特点,总结了超细钼粉制备技术的研究现状与进展,提出当前技术工艺所面临的问题以及未来的研究方向,以期为超细钼粉制备工艺的发展与工业化应用提供思路。

激光增材制造技术制备高熵合金的研究进展

摘要:目前基于焓变的传统合金化材料设计理念趋于极限,而基于熵变设计的新型金属材料中高熵合金设计自由度大,弥补了亚稳态材料室温脆性以及亚稳晶化的不足,且在性能上不断取得突破。激光增材制造技术具有不同于传统的加工设计和制造理念,为推动先进合金材料的发展提供了新的可能,已经成为链接材料与产品的关键技术。本文基于不同维度的激光增材制造技术,从2D、3D和4D 这3种维度分别介绍了激光熔覆技术制备高熵合金涂层、3D打印技术制备高熵合金和4D打印技术制备高熵高温形状记忆合金的研究现状,并结合目前研究中所面临的关键技术问题及解决方案进行了讨论,最后对激光增材制造技术制备先进合金材料进行了总结和展望。

高熵非晶材料及其增材制造技术研究进展

摘要:高熵非晶合金具有独特的物理、化学和力学性能以及更好的热稳定性,因而其制备技术成为国内外重要的研究热点之一. 然而利用传统技术制备高熵非晶材料时会产生晶粒粗大及材料浪费等缺点,难以满足工艺生产需要。而增材制造技术的精准制造和快速冷却等特点可以解决这一问题,制备出各项性能优越的高熵非晶合金。简要介绍了高熵非晶材料的研究体系和常用制造方法,着重阐述了高熵非晶材料的断裂强度、耐腐蚀性和热稳定性的研究,对增材制造技术的工艺特征和优势,以及利用增材制造技术制备高熵非晶合金的科学难点作出了总结。结果表明,利用增材制造技术有利于获得致密均匀的高熵非晶材料,但对于非晶相形成的解释仅限于高熵合金4大效应.最后阐述了近年来利用常用的两种增材制造手段制造高熵非晶合金的研究,并对增材制造技术制备高熵非晶材料的发展趋势提出了展望。创新点:(1) 阐明了高熵合金中非晶相的形成机理。(2) 阐述了常用于制造高熵非晶材料的两种增材制造方法。

先进制程芯片用超高纯钽靶制备工艺研究进展

摘要:通过物理气相沉积(physical vapor deposition,PVD)制备的Ta/TaN层具有优异的抗Cu-Si扩散性与良好的接触电阻等特性,随着半导体先进制程芯片的发展,其成为了扩散阻挡层的最佳选择。然而,作为PVD的重要原料- 磁控溅射超高纯Ta靶往往会因晶粒尺寸、织构梯度均匀性的问题,极大地影响沉积薄膜厚度的均匀性,从而影响先进制程芯片良率。因此,结合先进制程芯片的特殊应用环境,本文简述了集成电路用PVD工艺过程与先进制程对Ta靶的应用需求,并综述了近些年集成电路用超高纯Ta常用提纯与晶粒、织构控制工艺的研究进展,包括Ta粉提纯、电子束熔炼、锻造、轧制、再结晶退火工艺以及加工对最终Ta靶溅射性能的影响,针对各类工艺对Ta晶粒、织构的影响进行了阐述。最后,对磁控溅射超高纯Ta靶在先进制程芯片的应用现状与制备工艺难点进行了总结和展望,指出领域内新出现的更具高经济性与材料利用率的超高寿命高厚度(0.65英寸,1英寸=25.4 mm)Ta靶,以及对超高纯Ta形变热处理工艺研发与优化的迫切需求。

酸化生物炭负载锰材料对Pb(Ⅱ)的吸附性能及机理研究

摘要: 水体中重金属污染问题越来越被水环保领域研究人员所重视,如何高效去除水体中重金属问题被广泛研究。研究利用农林废弃物核桃壳作为原材料,制备出核桃壳衍生生物炭材料(WC)以及改性生物炭材料(SMWC)。并对其进行表征分析,研究材料的物理微观以及吸附特征性质,表征结果表明,改性后的炭材料表面孔隙中聚集较多的细小颗粒,增加了表面的粗糙程度;较改性前O—C=O、C—O 和O-Mn-O 基团的含量有所增加。研究了外界条件对SM-WC去除Pb(Ⅱ)的吸附性能影响。结果表明,在温度298K下,pH=5.5,SM-WC投加量为0.4g/L,Pb(Ⅱ)浓度为20mg/L的条件下,模拟吸附水中Pb(Ⅱ)的效率最高,去除率为93.8%。根据吸附动力学、等温线和热力学分析表明:SM-WC对Pb(Ⅱ)的吸附过程更符合拟二级动力学和Langmuir等温吸附模型,属于单分子层吸附,并且以化学吸附为主。