面向人工耳蜗的改进Wave-U-Net算法
摘要: 针对人工耳蜗在噪声环境下言语感知效果差,以及现有算法降噪能力不足的问题,本研究提出了一种改进的Wave-U-Net 模型。通过采取轻量化卷积,引入注意力机制,改进损失函数,优化数据集结构,以提高人工耳蜗的降噪效果。使用短时客观可懂度( short-time objective intelligibility,STOI) 、语音质量评估( perceptual evaluation of speech quality,PESQ) 、浮点运算次数( floating point operations per second,FLOPs) 和参数量( Params) 对模型的降噪效果和复杂度进行了评估,分别达到0.81、2.75,0.83 G,1.04 M。实验结果表明,本研究算法在符合人工耳蜗产品规范的基础上,实现了明显的降噪效果,提高了人工耳蜗使用者在复杂噪声环境中的语音感知效果。本研究方法为人工耳蜗算法的改进提供了新的可能,可为听力受损患者提供更好的听觉感受。