应对老龄化所致慢病的智能生物材料

摘要:人口老龄化进程的不断加速直接导致骨质疏松和心血管疾病等慢性病高发, 对以组织修复材料为核心的临床治疗方法提出了巨大挑战. 本综述通过回顾生物材料的发展历程, 总结归纳了各阶段生物材料的优劣势, 同时详细论述了老龄化病损组织修复所面临的组织功能和微环境稳态难以维持的难题, 最后基于此探讨如何结合人工智能、材料生物学、影像组学等新兴技术, 研发能感知生理病理微环境, 适时响应和主动调控生物学效应,并全周期适配病损组织修复进程的新一代“自适应”智能生物材料.

可吸收镁合金在生物医学中的应用现状与展望

摘要:可吸收镁合金具有良好的生物相容性、生物降解性和力学性能,使其成为理想的生物医学材料,目前在骨科及心血管领域已有一定的应用。然而,可吸收镁合金仍面临着生物降解性和耐腐蚀性之间的平衡、力学性能和组织相容性适配等方面的挑战。重点综述了可吸收镁合金在生物医学中的应用现状、存在的问题与挑战、可能的改进方案,并对未来应用做了展望。

生物炭光催化材料降解抗生素的研究进展

摘要:大量的抗生素被释放到自然环境中,对生态系统和人类健康构成潜在威胁。生物炭光催化材料通常具有污染物去除效率高、环境友好和能耗低等优点,在高效去除水中抗生素方面具有广阔的应用前景。生物炭的结构和化学性质提高了光催化剂的吸光性能、降解活性和稳定性。本文综述了生物炭光催化材料相对于生物炭吸附以及纳米粒子光催化降解水中污染物的优势,总结了溶胶凝胶法、超声法、水热法3 种制备生物炭光催化材料的方法,以及复合材料应用于降解水体中抗生素方面的研究进展,重点介绍了生物炭光催化材料降解水体中污染物的机理,最后对生物炭光催化材料未来的研究方向和发展前景进行了总结和展望,指出设计可规模化和实际应用的生物炭光催化材料将成为该领域未来的研究重点。

稀土元素应用于牙齿组织修复的研究进展

摘要:牙齿的功能在于促进食物消化、帮助发音和保持面部的协调美观。近些年来,随着人们对保护牙齿的重视,牙齿的组成和结构以及导致牙组织损坏的诱因和过程被科研工程者深入地研究。为了消除龋病、牙齿脱落和畸形给人们生活带来的不利影响,修复破损的牙组织、进行种植牙和正畸是恢复牙齿功能和美观性的有效途径。研究表明,一些稀土元素能很好地参与牙齿材料的矿化与制备,进而显著提高牙组织修复材料的性能。本文综合介绍了稀土元素应用于防龋、修复牙组织、正畸等方面的研究现状,分析了稀土元素在牙组织修复过程中所起的作用,提出了科学而合理的建议,并展望了稀土元素应用于牙组织修复的未来发展方向。

抗生素全细胞生物传感器的设计与应用研究进展

摘要:抗生素是由微生物产生或人工合成的具有杀菌或抑菌活性的化学物质,被广泛应用于临床治疗以及畜牧业和水产养殖行业中,使得土壤、水体和食品等环境中抗生素的残留问题非常突出;与此同时,抗生素耐药性问题日益严重,新型抗生素的开发迫在眉睫。全细胞生物传感器可以利用微生物细胞将抗生素信号转换为可读信号,不仅能够简单快速、灵敏准确地对抗生素进行动态检测,还能有效地发现新型抗生素。本文对目前报道的抗生素全细胞生物传感器进行了全面的梳理和总结,将其分为特异型和广谱型两大类型,并重点阐述了两大类型抗生素生物传感器的设计原理与应用实例,为其他抗生素全细胞生物传感器的构建及应用提供了借鉴。

细菌纤维素功能化改性及其在医学领域的研究进展

摘要: 细菌纤维素(bacterialcellulose,BC)具有独特的三维网络结构,其孔隙率高、机械强度大、生物相容性好,可作为人造血管、组织工程以及伤口敷料的理想候选者,是生物医学材料研究的热点之一。然而,由于BC本身并不具备抗菌、生肌止血等特点,限制了其在医学领域的进一步应用。因此,通过非原位和原位改性方法将功能性聚合物、碳基纳米材料以及金属纳米颗粒引入BC,获得具有增强功能特性的复合材料,这些改性的BC材料在该领域中展现出巨大的应用潜力。本综述介绍了BC的制备,及其功能化改性,并总结近年来其在医疗领域的主要成果,为开发低成本、绿色安全和多功能的医用材料提供参考。

负泊松比型镍钛合金血管支架结构设计及其在血管中的支撑性能研究

摘要:通过用户自定义NiTi合金子程序对负泊松比结构的凹凸型自扩张支架进行有限元模拟分析,通过控制变量法研究了不同几何参数条件下,支架在自膨胀过程中状态和应力演化情况。结果表明:随着周向支撑单元数量Nc和支撑圈倾斜杆与水平方向的夹角θ改变,凹凸型支架与之对应的支撑性能出现完全相反的变化。支架轴向距离在向四周扩张过程中变化的大小主要与参数h/l和0呈负相关。凹凸型支架处于病变股动脉时的扩张率可以达到90.3%,高于现有自膨胀医疗支架。本凹凸型支架在股动脉中工作时可以实现均匀的扩张,直接避免了中间狭小而两端宽的情况出现。进行了Goodman疲劳曲线和疲劳因子评估,符合国家对医用支架的服役寿命要求。

基于宏基因组分析移动床生物膜反应器(MBBR)生物膜的微生物结构和功能基因

摘要:为探究双氧水生产废水厌氧-缺氧-好氧(AAO)处理工艺的缺氧池中移动床生物膜反应器(MBBR)生物膜的菌群结构及脱氮潜力,基于宏基因组测序对MBBR生物膜的菌群和功能多样性进行分析,挖掘功能基因,并进行实时荧光定量PCR(qPCR)验证。菌群结构分析显示:缺氧生物膜和缺氧水样活性污泥中99%以上为细菌;在门水平下,变形菌门(Proteobacteria)在2种样本中占比最大,分别为92.3%和67.5%,放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)在缺氧生物膜中的占比明显比缺氧水样活性污泥中的大;在属水平下,陶厄氏菌属(Thauera)在缺氧生物膜中的相对丰度比缺氧水样中的明显上调。基因挖掘和qPCR实验结果表明,缺氧载体生物膜中含有硝酸盐转化为亚硝酸盐的潜在途径及其他反硝化途径,并且显著高于缺氧水样中的活性污泥。研究为后续集成MBBR技术用于双氧水生产废水处理提供一定的理论基础。

介孔生物玻璃复合支架及其骨组织修复应用

摘要:介孔生物玻璃 (Mesoporous Bioglass, MBG)支架由于高的比表面积和介孔结构而具有优异的成骨活性、生物降解性以及局部药物递送功能。MBG支架可提供细胞增殖/生长、细胞外基质沉积、营养物质获取的场所,引导新骨生长而修复骨缺损。然而,纯MBG支架的力学强度低、脆性大而使其应用于骨缺损修复受到限制。将MBG结合生物高分子或其他生物陶瓷制备MBG复合支架成为解决上述问题的有效策略之一。本文将基于MBG复合支架的骨组织修复应用背景,简单介绍MBG复合支架的制备方法,系统总结MBG复合支架在骨组织修复领域中的应用,最后对MBG复合支架的发展前景与挑战进行展望。

生物基可降解聚合物在生物医学领域的应用及研究进展

摘要:聚合物科学和工业的发展使得人们更加关注环境友好的材料,以减轻传统石油基塑料对环境的影响。生物基聚合物是具有良好可持续性、生物相容性和可降解性的材料,在食品包装、农业、纺织等领域表现出巨大的应用潜力,并在生物医药领域中具有独特的优势。综述了常见的生物基可降解聚合物(多糖、蛋白质、合成聚合物如脂肪族聚酯等)的获取方式、结构、性质特点及其在生物医学领域中的最新研究进展,分析了它们目前存在的缺陷,并对未来的发展趋势进行了展望。