可降解铝合金在油气田开采中的开发应用进展

摘要:可降解金属是完成设定功能后,在含水体环境中可分解成粉体的材料。随着非常规油气田开采技术的迭代进步,可降解金属的潜在应用包括但不限于压裂球、桥塞、球座等。本文以可降解铝合金为例,概述了可降解的含义、铝的降解原理、可降解铝在油气田开采装备中的优势;归纳了压裂工具的力学性能、降解性能、环境相容性等要求;介绍了Al-Ga-In-X、Al-Ga-Sn-X和Al-Ga-In-Sn-X(X为Mg、Cu、Zn、Ti等元素)等较为成熟的可降解铝合金体系及降解机理;总结了温度、介质类型、制备技术等影响降解性能的因素;列举了可降解金属在油气田开采装备中的应用案例。提出了目前函需解决的产学研用合作、行业标准等问题,展望了今后的发展方向。

镁合金点蚀的研究进展

摘要:总结了国内外针对镁合金点蚀的最新研究成果,特别是腐蚀环境和微观结构对镁合金点蚀的萌生和发展的影响规律;介绍了新型微区原位技术在镁合金点蚀研究上的应用,并指出将微区原位技术与传统腐蚀研究方法相结合是揭示镁合金点蚀机理的重要手段。同时,提出了可减缓镁合金点蚀的方法。最后,对未来镁合金点蚀的研究重点和方向进行了分析和展望,以期对解决镁合金点蚀问题起到一定的指导意义。

粉末高温合金FGH4095和FGH4096的抗高温氧化性能

摘要:为研究舰载航空发动机关键部件的氧化腐蚀防护,开展镍基粉末高温合金FGH4095和FGH4096在750~1100℃空气环境中的高温氧化实验,采用静态增重法测定两种合金在不同温度下的氧化动力学曲线,利用金相显微镜、扫描电子显微镜、电子探针分析仪和X射线衍射仪对合金试样表面与截面氧化层的形貌、结构以及组成进行观察和分析。结果表明:FGH4095和FGH4096两种合金在750~900 ℃时属于完全抗氧化级,在1000~1100 ℃时属于抗氧化级,而两种合金的实际服役温度在900℃以下,所以在其工作温度范围内抗氧化性能优异。在750~900℃时,两种合金的抗氧化性能相近,无明显差别,氧化膜均未发生剥落。高温氧化后,FGH4095和FGH4096的氧化膜分为两层,内层都是以Al2O3 为主,FGH4095的外层由Cr2O3,Nb2O5 和TiO2 组成,而FGH4096的外层仅为Cr2O3 和TiO2。在1100℃时,两种合金都发生明显氧化,大量氧化皮破裂,由于合金成分不同,此温度下两种合金的抗氧化性能差别较大,相比之下FGH4095合金具有更好的抗氧化性能。

钛合金成形技术与应用

摘要: 钛合金因其优异的性能成为高端装备零部件的优选结构材料,但钛合金属于难变形合金,成形加工困难,因此成形技术是产品加工的主要技术瓶颈。主要介绍了冷冲压成形技术、超塑成形技术、旋压成形技术、热推制成形技术、热模锻成形技术的特点,以及利用这些技术制备的不同形状、规格及品种的钛合金复杂零部件。指出了钛合金成形技术亟需解决的问题: 提高加工效率,降低生产成本。传统加工成形工艺与大数据人工智能及数值模拟预测等新技术深度融合,将是钛合金成形技术的发展方向。

镁合金微弧氧化膜致密化技术研究进展

摘要:镁合金作为轻质结构材料,在装备轻量化领域展示了巨大的应用潜力。由于镁合金的化学活性较高,表面生成的氧化膜疏松多孔,严苛的服役环境对其长效稳定性构成严重威胁。采用表面防护技术有效提升镁合金的耐蚀性,延长其使用寿命。在镁合金表面改性防护技术中,微弧氧化技术具有显著的技术特征,被认为是最有前景的镁合金表面防护技术之一。然而镁合金微弧氧化膜存在本质的多孔结构特征,影响膜的防护效果。为扩大镁合金的应用领域,需要对微弧氧化膜进行致密化处理。本文综述了镁合金微弧氧化膜致密化技术的发展概况,总结了微弧氧化膜致密化技术的主要策略,以期为高致密镁合金微弧氧化膜的设计提供理论指导。最后,对镁合金微弧氧化膜致密化技术的未来发展趋势进行了展望。

增材制造镍基高温合金成形过程数值模拟研究进展

摘要:增材制造技术为镍基高温合金复杂零部件的制造带来了前所未有的机遇,然而在实验研究和实际生产中仍然面临着较大的竞争压力,制约了增材制造镍基高温合金的快速发展。近年来,不同尺度的模拟方法逐步应用于指导镍基高温合金的增材制造和开发。宏观尺度模拟关注成形过程中的热历史、成形控制、残余应力分布和力学行为;介观尺度模拟主要用于解决成形过程中的激光吸收、熔池内熔体流动、熔化凝固、缺陷形成以及裂纹防治等问题;微观尺度模拟则聚焦于制造过程中构建材料的微观组织演化;而多尺度模拟通过耦合不同类型的模型,实现了材料成形过程中的跨尺度研究。本文通过综述宏观、介观和微观以及多尺度条件下镍基高温合金增材制造过程数值模拟研究进展,分析了不同模拟方法对于解决增材制造镍基高温合金成形和控性相关问题的策略和思路。最后,针对如何推动数值模拟在增材制造镍基高温合金开发中的应用进行了展望,并指出其发展方向。

钛合金材料超声滚压加工的仿真分析与实验研究

摘要: 采用普通滚压加工工艺对钛合金材料进行加工时,存在因低频冲击造成的工件残余应力分布不均匀和表面硬度低等问题,为此,开展了钛合金材料超声振动滚压工艺仿真及实验研究。首先,从理论层面分析了超声滚压加工的运动学及动力学特性,找出了影响超声滚压加工性能的相关因素; 然后,采用ABAQUS 有限元软件建立了钛合金材料的仿真模型,分析了超声滚压对残余应力的影响及强化机理; 最后,设计了钛合金工件的超声滚压实验,研究了不同参数指标对工件加工质量的影响,并根据实验结果对仿真模型和残余应力结果进行了验证。研究结果表明: 随着静载荷和超声振幅的增加,工件表面残余应力分布相对均匀且趋于平稳,表面粗糙度呈现先降低后增加的趋势,表面硬度随强化层深度的增加逐渐降低; 在振幅为20μm时,工件表面质量和性能相对较好,此时残余应力均值为849MPa,表面粗糙度均值为0.1μm。该实验结果与仿真分析结果一致,验证了所建模型的可靠性,可为滚压制造工艺参数的选取提供参考。

含Ho镁合金的研究现状

摘要:镁合金作为轻质金属结构材料目前已获得广泛的研究应用,新型稀土镁合金的开发是进一步提高镁合金应用价值的重要体现。Ho在Mg中具有较高的固溶度,能显著细化晶粒,提高合金的室温和高温力学性能,增强合金的耐腐蚀性。本文主要从Mg-Ho二元合金、Mg-Ho-X(RE,Zn)、Mg-X-Ho(X=Al,Zn,RE)系合金进行了综述。对目前含Ho镁合金的研究现状进行了归纳总结,指出了目前含Ho镁合金的优势及不足之处,希望能对含Ho镁合金的研究提供新的思路。

生物技术在有色冶金废水处理中的应用

摘要:有色冶炼废水中含有大量的重金属、难降解有机物、NH+-N等,生物处理技术因其成本低和可持续性受到了广泛关注。本文在文献计量分析基础上对不同类型生物技术的性能特点进行了阐述,并对未来生物技术的发展进行了展望。 文献计量分析证实采用生物技术冶炼废水是未来的主流技术,但在基础研究方面仍旧缺乏、不够深入;驯化后的MBR(Membrane bio-reactor)侧重于去除重金属污水中的氮素和有机物,BF(Biological filter)、SBR(Sequencing batch reactor)更适用于同时去除包括重金属在内的多种污染物,通过工艺改进、耦合可以有效应对含多种重金属的污水;菌剂技术更加清洁、可持续,不仅可以应对多金属共存的高浓度污水,还可以通过矿化实现有色金属回收,但是应用时需要采取措施加以固定,考察菌株之间的相互竞争、协同关系,探明最优参数;微生物电化学技术、植物-微生物耦合技术、菌藻共生技术是近年来新发展的废水处理技术,三者可以相互耦合形成高效污水处理集成技术体系。 未来,构建多技术集成体系和循环经济技术体系是重要的关注方向。

铝锂合金激光焊接技术研究进展

摘要:先进轻质铝锂合金因其出色的断裂韧性、高比强度比刚度、稳定高低温性能、良好耐蚀性,现已成为最具竞争力的航空航天材料之一。激光焊接具有能量密度高、热影响区窄、结构变形小和焊接速度快等优势,是焊接铝锂合金薄板材料最具潜力的工艺方法。采用铝锂合金焊接结构替代机械连接,可有效地提高材料的利用率,减少零件使用,降低制造成本,实现结构减重。目前,铝锂合金因其自身材料特性,在激光焊接过程中仍存在一些关键技术问题待解决。本文综述了铝锂合金,激光焊接技术,以及铝锂合金激光焊接技术在国内外航空航天领域的研究现状,并展望了铝锂合金激光焊接技术的主要研究方向。