冷轧带钢板形测控技术的发展状况和关键问题

摘要:冷轧带钢属于高端精品钢材,板形在线检测与控制是冷轧带钢的高端核心关键技术。自主创新研制板形测控系统是实现中国钢铁工业发展升级、建设钢铁强国的重大需求。目前,板形测控技术市场国外占据优势,国产系统正在代替进口,扩大应用规模,推进技术完善。研制先进的板形测控系统需要解决的关键技术有高精度高质量的板形仪、功能完备强大的控制手段和方法、高精度高速度的数学模型。板形仪主要有接触式和非接触式两大类,接触式板形仪通过测量带钢张力的横向分布反映板形,非接触式板形仪通过测量带钢浪形反映板形。接触式板形仪可靠耐用精度高,应用广泛,发展趋势为整辊式板形检测辊、无线式信号传输装置、板形数据的精确处理。板形控制数学模型的主要类型,按建模的原理和方法可分为机理模型和智能模型;按模型的性质和作用可分为分析模型和控制模型;按板形的表示方法可分为多点控制模型和分量控制模型。板形控制模型的发展趋势为机理与智能协同建模、动态模拟预报和动态解耦控制、多种手段和方法的协同优化。进一步提高板形测控技术水平需要突破3项关键问题,即整辊式板形仪通道耦合与解耦的机理模型、板形控制的动态模拟和动态解耦模型、板形控制的高精度智能建模方法。

冶金机理与贝叶斯优化XGBoost融合的VD炉精炼终点钢液温度预测

摘要:在炼钢生产过程中,真空脱气精炼(VD)炉是生产高品质钢的重要设备之一,其精炼终点温度对钢液质量、生产效率和连铸顺行具有重要影响。为了实现对VD炉精炼终点钢液温度的精准控制,本文采用冶金机理和贝叶斯优化极端梯度提升(metallurgical mechanism–Bayesian optimization–extreme gradient boosting, MM–BO–XGBoost)相结合的方法建立钢液温度预测模型。首先,基于VD炉冶金机理解析,确定影响精炼终点钢液温度的主要因素;其次,使用3σ原则对实际生产数据进行预处理,剔除异常值,并采用皮尔逊相关性分析剔除对钢液温度影响较小的因素,从而确定模型的输入变量;再次,将冶金机理与XGBoost模型进行融合,对输入变量的初始特征重要性进行部分放大;最后,针对XGBoost模型的超参数寻优问题,采用贝叶斯优化(BO)对其进行超参数寻优,由此构建了MM–BO–XGBoost模型。在模型仿真过程中,对本文模型同时使用网格搜索和随机搜索进行超参数寻优,旨在对比和验证BO寻优的效果;此外,使用本文提供的数据对已有的冶金机理模型、多元线性回归模型和反向传播神经网络模型进行仿真,并与MM–BO–XGBoost模型进行性能对比。结果表明:本文提出的MM–BO–XGBoost模型的超参数优化效果最好;本文模型的预测VD炉终点钢液温度在±10 ℃和±15 ℃误差范围内的命中率分别为87.81%和96.42%,均高于其他对比模型,综合性能最优。本文构建的VD炉钢液精炼终点温度预测模型,对实现钢液温度精准控制、降低生产成本和提高VD炉精炼效率具有重要的现实意义。

钢铁材料及有色合金构件的多段半固态成形工艺研究

摘要:目的 为了有效抑制半固态成形过程中的液相偏析,改善半固态成形构件微观组织和力学性能的均匀性。方法 提出了包括多段流变成形和多段触变成形在内的多段半固态成形工艺。多段半固态成形工艺均由半固态坯/浆料制备、预成形、控温冷却和终成形4 个阶段组成,分别在热模拟试验机和机械伺服压机上开展了SKD11 工具钢和6061 铝合金的半固态触变成形和半固态流变成形试验。结果 在初成形阶段,具有较高液相分数的半固态坯/浆料以较高的应变速率初步充填型腔,限制了液相外流的时间和空间;在控温冷却阶段,半固态坯/浆料的液相分数因部分凝固而降低;在终成形阶段,具有较低液相分数的半固态坯/浆料以较低的应变速率完成型腔的充填,由于固相晶粒在此阶段发生塑性变形而提高了成形构件的力学性能。结论 获得了组织均匀性较好的钢铁材料和有色合金构件,验证了多段半固态成形工艺的可行性。

电工钢冷轧装备现状及冷轧技术研究

摘要:介绍了国内外电工钢生产企业冷轧装备现状,并结合电工钢冷轧装备,对高牌号电工钢的冷轧技术进行了分析研究,给出了相关品种与设备选型的建议。

基于机器学习的耐蚀低合金钢跨尺度数据挖掘研究

摘要:利用机器学习方法,以户外积累的环境腐蚀大数据及实验室加速试验获取的微观组织结构的腐蚀数据作为数据源,通过训练学习,获取环境因素中引起低合金结构钢腐蚀的关键因素,并从合金成分出发,分析合金元素对耐蚀性影响的权重因子;同时,结合材料微观结构数据,分析材料微观组织结构差异对耐蚀性影响的原因。基于以上学习训练模型,建立合金成分及组织结构预测低合金钢腐蚀规律的试验方法。

直缝埋弧焊钢管焊缝点状缺陷原因分析及改进

摘要:为了解决壁厚23 mm直缝埋弧焊管出现的焊缝点状缺陷问题,通过超声波探伤和宏观金相检测对实际生产过程中出现的焊缝点状缺陷不合格试样进行了分析,对铣边坡口形状、焊接工艺参数、焊接材料、焊接设备及焊件清理等方面给出了相应的优化改进措施。现场应用效果表明:这些措施的实施有效控制了此类直缝埋弧焊管焊缝中的点状缺陷,保证了直缝埋弧焊管焊缝形貌及各项力学性能指标, 提高了焊接质量。

中国双相不锈钢的发展及研究进展

摘要:结合中国双相不锈钢发展的特点,从技术进步、产量增加、应用拓展、发展趋势等方面阐述其发展情况。跟随国际发展趋势,中国双相不锈钢经历了从第1代到第3代及经济型双相不锈钢的发展历程,特超级双相不锈钢的开发及应用也在积极探索中。中国双相不锈钢研发虽然起步晚,但在发展初期就与国际同步确立N合金化的现代双相不锈钢发展方向。中国双相不锈钢从业者一贯注重工艺改进和技术进步,在组织控制及性能提升、热塑性和析出相等多方面的研究及进步,特别是近年来在双相不锈钢组织及性能平衡调控、低温冲击韧性研究及提升性能方面的进展,将有力支撑中国双相不锈钢产量的增长及应用的拓展。伴随技术及市场形势的发展,中国双相不锈钢产量在2015-2021年得到快速增长,其中2021年的产量达到24.06万t。可以预见,中国双相不锈钢将在质量、产量、品种、应用等多方面得到进一步的发展。

材料研发大数据系统在钢铁材料研发中的应用

摘要:在材料智能研发的大背景之下,结合材料研发的痛点、卡点与难点建设了一套材料研发大数据系统平台。该平台整合了诸如高通量集成计算平台、智能实验室管理系统、生产大数据系统等多个子系统,借助这一平台,科研人员可通过数字化手段,充分借鉴以往研发失败的经验教训,迅速锁定产品及工艺开发的关键所在,进而快速提升研发效率。同时,该平台能够对研发数据进行集中管理与应用,推动材料研发向数据驱动研发的全新模式转变。通过开展研发大数据平台的相关建设工作,冶金材料研发的数据管理水平与应用水平将会得到大幅提升,引导钢铁材料研发从传统的试错法逐步转向大数据分析方法,极大缩短研发周期,降低研发成本。

高品质钢铁材料轧制加工新技术研究进展及发展趋势

摘要:近10年来,我国钢铁材料轧制领域在工艺、装备以及流程等方面均取得了显著进步。回顾了我国热轧钢材在线组织性能调控技术、离线热处理技术、铸-轧一体化短流程技术以及轧制过程自动化等技术的研究和应用进展,并指出铸-轧界面高效高质化技术、轧制过程高效均质化技术、铸轧短流程高质化以及轧制加工数字化技术等,是轧制领域重要的发展方向。

钢中过渡金属氮化物结构和物性的第一性原理计算

摘要: 钢中过渡金属氮化物(TiN、NbN、TaN、VN)的性质对于深入理解材料的微观结构和性能具有重要意义。采用第一性原理计算方法,深入分析了钢中过渡金属氮化物的晶体结构、力学性能和电子特性,揭示了这些氮化物的稳定性。研究发现,TiN 具有最大的形成焓绝对值,显示出最高的结构稳定性。能带结构分析表明,TiN、NbN、TaN 和VN 均为导体材料,呈现金属导电性质。弹性性能计算揭示了VN 的体积模量为315GPa,显示出较大的不可压缩性。此外,TiN 和VN 的剪切模量为184GPa,表明他们在抵抗剪切形变能力方面优于NbN和TaN。弹性各向异性计算说明TiN 比NbN 的微观结构更均匀,而VN 具有比TaN 更均匀的微观结构。电荷密度分析确认了Ti-N、Nb-N、Ta-N 和V-N 键的共价特性。布局数计算进一步揭示了TiN、NbN、TaN 和VN 中存在离子键和共价键的相互作用。这些结果有助于实现钢中过渡金属氮化物的合理控制,对提升含氮不锈钢性能具有重要意义。