增材制造高强钢的研究进展及应用

摘要:高强钢具有高的强度及韧性,在航空航天等领域具有重要地位。大型关键重载构件存在锻造难度大、对热加工要求高等问题,限制了其进一步发展和应用。增材制造技术可以实现金属构件的高性能精确快速成形,为高强度钢的制造提供了一条新途径。本文介绍了增材制造高强度钢的成形特性,综述了增材制造高强度钢的组织演变规律和力学性能特征。研究表明,工艺参数对增材制造高强度钢的致密度、熔覆层宽度和高度均影响较大,进而影响成形件内部质量。热累积会使层间组织变粗大,同时使不同部位的组织发生不同的固态相变,使高强钢的组织更加复杂;热处理可以显著提高增材制造高强度钢的综合力学性能;最后对高强度钢增材制造过程中需要进一步深入研究的问题进行了探讨和展望。

我国无取向电工钢技术的进步与发展

摘要:改革开放以来,我国无取向电工钢技术进步为钢铁、电工行业发展及国民经济增长做出了重要贡献。从无取向电工钢生产的全流程进行分析,结合生产技术、装备升级,系统阐述了冶炼、热轧、冷轧、热处理、涂层等关键工序的生产工艺进步;从织构控制、磁性能提升、硅钢强化技术等角度,深入分析了支撑生产工艺进步的相关材料学技术机理;围绕“高效、高端、绿色、智能”的发展目标,描绘了无取向硅钢的技术发展趋势。我国无取向电工钢已形成技术创新—产品进步—技术机理研究互相支撑的良好发展格局,预期未来我国无取向电工钢的技术水平和产品实物质量将继续呈现引领全球的发展态势。

太钢冷轧无取向硅钢绝缘涂层的发展及技术进步

摘要:简述了国内和太钢冷轧无取向硅钢绝缘涂层的发展历史及现状,介绍了太钢目前不同类型涂层的主要性能、应用领域,及近些年来涂层发展过程中生产技术的进步,主要包括C5薄环保涂层自主开发、C6极厚涂层国产化、自粘结涂层工艺开发,并提出了绝缘涂层下一步的发展方向。

热轧带钢高效与智能轧制新技术研究进展及应用

摘要:伴随着钢铁工业朝着产品高端化、高质化和生产高效化、绿色化、智能化方向的快速发展,热轧带钢高效与智能轧制技术取得了巨大进步,涌现出诸多创新成果。综述了近年来热轧带钢生产先进控制模型和专用轧制技术以及钢铁智能工厂建设的新进展。重点关注了加热炉智能化过程控制模型、辊系-轧件快速计算模型、力学性能预报模型、硅钢同板差控制技术、高强钢高次浪形控制技术、高强钢轧后冷却板形控制技术、常规热轧产线高效轧制技术、无头轧制产线边降控制技术、薄带铸轧产线板形调控技术、质量管控大数据平台、物料多维信息感知技术、热轧多区域集控技术、热轧多业务协同技术等内容。这些技术的不断创新与应用,锻造了热轧带钢生产新质生产力,提升了热轧带钢产品竞争力,推动了钢铁工业的整体技术进步。

机器人在冷轧智能制造系统的案例浅析

摘要:结合冶金行业的发展及冷轧生产的要求及现状,着重介绍了安川机器人在冷轧工序智能制造方面的成功应用案例,主要就机器人钢卷剪捆带、贴标、喷号及取样制样的特点和机器人系统的基本结构、主要功能及工作原理等方面展开论述。

棒线材连铸-直接轧制工艺关键技术研究

摘要:为了满足我国钢铁行业转型升级对绿色、可持续发展的需求,需解决棒线材生产中能源损耗严重的问题。深入研究了棒线材连铸-直接轧制工艺的关键技术。该工艺是一种适用于普通棒线材生产的新型工艺,通过充分利用连铸坯冶金热能,可完全取消铸坯加热工序,从而实现节能减排、减少烧损的目的。从生产能力匹配、温度匹配、节奏匹配和生产管理4个方面研究和分析了棒线材连铸-直接轧制工艺的关键技术,推导了生产能力匹配和节奏匹配的数学表达式,研究了连铸至轧钢全过程铸坯温度的变化规律,并给出了连铸-直接轧制工艺一体化生产制度和典型工艺平面布置方案。研究结果表明:棒线材连铸-直接轧制是一种绿色、环保、低成本、高效益、高效率的生产方式,具有较好的经济效益和广阔的应用前景。

碳纤维粉末改性铁基粉末冶金材料的组织与性能

摘要:采用还原 Fe 粉作为基体,分别添加长度约为 20μm 的微米短碳纤维(micron short carbon fibers, MCsf)和粒径为 1~4μm 的碳纤维颗粒(carbon fiber particles, Cfp)作为弥散相,采用压制−真空烧结制备 MCsf/Fe 和Cfp/Fe 粉末冶金材料,并与平均粒度 10 μm 的天然石墨(natural graphite, NG)为原料制备的 NG/Fe 粉末冶金材料进行对比。研究微米短碳纤维、碳纤维颗粒对粉末冶金材料显微组织、物理性能、力学性能和尺寸变化的影响。结果表明:碳纤维颗粒的活性远高于石墨和脱胶短碳纤维(degummed short carbon fibers, DCsf),空气气氛下800 ℃的最大质量损失率为石墨的3.75倍,脱胶短碳纤维的16.6倍。与 NG/Fe 和 MCsf/Fe 粉末冶金材料相比,Cfp/Fe 粉末冶金材料在烧结过程中的尺寸稳定性大幅提高,最大径向膨胀率和收缩率分别为0.39%和 0.14%,且强度和韧性最高,密度、抗弯强度、剪切强度和抗拉强度分别为6.91 g/cm3、736.9 MPa、205.7 MPa和334.8 MPa,伸长率达到 10.5%,材料的断裂模式由脆性沿晶断裂向完全韧窝型断裂转变。

无镀铜焊丝的特性及推广应用

摘要:从无镀铜焊丝的特性出发,阐述了无镀铜焊丝的烟尘量、电弧稳定性、抗锈性、焊丝外观及飞溅等内容,说明了无镀铜焊丝与镀铜焊丝在本质上的差异,以及在生产应用中需要注意的相关事项,为焊接同仁对无镀铜焊丝与镀铜焊丝的选择与应用提供借鉴。

激光刻痕对高磁感取向硅钢板耐蚀性的影响

摘要: 通过扫描电镜(SEM)和能谱仪(EDS)对激光刻痕后高磁感取向硅钢表面进行形貌观察和化学成分分析,并采用硫酸铜点滴试验、加速腐蚀试验(交变湿热试验及动态接触湿热试验)研究了激光刻痕对取向硅钢耐蚀性的影响。结果发现:激光刻痕对取向硅钢表面涂层厚度均匀性和平整性造成破坏,使取向硅钢基体出现裸露的情况,耐蚀性大幅降低。

机器学习在材料科学中的应用

摘要:概述了4种机器学习方法,包括监督学习、无监督学习、深度学习、强化学习。讨论了机器学习在材料设计与发现、材料表征和计算材料学中的具体应用,展示了其在加速材料开发和优化方面的潜力。介绍了材料科学中的数据库和数据挖掘技术,总结了数据库的发展和数据挖掘的应用。汇总了新兴大模型技术在材料科学中的应用,提出大模型技术的发展引领材料科学进入了智能化新时代。然而当前领域仍面临诸多挑战,如数据质量、模型解释性和隐私安全问题等。通过深入研究和国际合作,未来的材料科学有望通过机器学习技术实现更加智能化和高效的材料设计与发现。