高品质钢铁板带轧制关键装备与技术研究进展

摘要:高品质钢铁板带是航空航天、武器装备、核电能源、轨道交通、石油化工、建筑桥梁等国家重大工程的基础材料,其生产装备与制备技术代表着工业基础水平,是支撑我国经济发展的中流砥柱和维护国防安全的重要保障。面向未来国家经济主战场与战略必争领域,以高品质钢铁板带为对象,对宽厚板轧制、热连轧、冷连轧等具有代表性的生产过程进行关键装备与技术研究进展综述,将国家需求和创新引领作为主线,提出以“极限化、复合化、智能化、绿色化”为导向的技术路线和发展方向,进一步健全创新体系、攻克关键技术、突破关键材料、提高产品质量、促进产业升级和降低能源消耗,以期对钢铁产业绿色可持续发展有所裨益。

氢冶金炼钢技术的研究现状与展望

摘要:提出了“氢气炼钢”代替“氧气炼钢”的观点,对“氢气炼钢”的研究现状进行了总结和评价。氢冶金炼钢在节能降耗和改善产品质量方面具有独特优势。一方面“氢”具有高效熔炼作用,能够有效降低炼钢能耗。等离子体态的“氢”具有高温、高热导率的优势,可作为高效热源实现炉料熔化与钢液加热,在电弧炉、转炉以及中间包等炼钢设备中得到初步应用。喷吹气态“氢”能够加速成分和温度均匀,且氢气泡运动能粘附和加快其他非金属夹杂物上浮;同时与钢液中的氧等反应释放大量热量,改善了熔池反应的热力学与动力学条件。此外,“氢”通过营造还原性气氛,抑制氧化,降低Cr、Mn等合金元素的损耗。另一方面,“氢”具有无污染精炼的作用,能够显著提高钢液洁净度。基于“氢”的高活性和高还原性,“氢”能够有效去除钢中O、C、N、S和P等杂质元素,尤其是等离子态“氢”,可直接与杂质元素反应生成H,O、CH4、NH、H,S和PH,等极易挥发去除的气体产物,避免非金属夹杂物形成,实现“零夹杂物”的高效高洁净度炼钢。因而,发展以“氢”代“碳”的氢冶金新一代绿色近零碳“零夹杂物”无污染钢铁冶金流程,将加速钢铁工业绿色高质量可持续发展,助力中国实施“双碳”与“制造强国战略。

GH4099合金粉末的热等静压成形和薄壁筒体的制造

摘要:分别采用等离子旋转电极雾化法(PREP)和无坩埚感应熔炼超声气体雾化法(EIGA)制备出GH4099 洁净预合金粉末,再将其热等静压(HIP)制备GH4099 合金,研究了热等静压温度对其显微组织和拉伸性能的影响。采用优选的热等静压制度1230℃/150 MPa/4 h 进行有限元模拟辅助包套设计,用PREP粉末制造出GH4099 薄壁筒体。结果表明,与EIGA法相比,用PREP法制备的GH4099 粉末球形度更好、表面氧化层更薄,更适合进行热等静压成形。在1165℃~1230℃随着热等静压温度的提高GH4099 合金的孔隙和原始颗粒边界数量显著减少,使其在900℃的拉伸性能提高。用PREP粉末制造的GH4099 薄壁筒体,其关键尺寸与实际薄壁筒体的相对偏差小于5%。

1.2 mm薄规格带钢开发及稳定轧制的研究

摘要:唐山不锈钢1580热轧生产线极限薄规格带钢生产稳定性差,本文分析影响的主要因素包括:板坯加热温度的均匀性、轧制过程温度、轧制设备精度、轧制稳定性及层冷工艺等。通过调整板坯加热工艺和加热炉操作工艺,优化粗轧机末道次的负荷分配,优化精轧机负荷分配,调整轧制模型预设参数取值方法等措施,1580热轧生产线成功开发生产了235 MPa强度的1250 mm×1.2mm规格的产品,同时提高了薄规格产品的轧制稳定性。

新形势下薄板坯连铸连轧技术的进步与发展方向

摘要: 对新形势下国际和国内薄板坯连铸连轧(TSCR)生产线发展状况及特点进行了综述, 研究了薄板坯高速连铸生产的关键技术、隧道式加热炉的节能技术、薄板坯无头轧制技术、薄规格及高附加值钢种的开发等在中国的应用现状, 提出了国内薄板坯连铸连轧技术的未来发展主要方向。

立式离心浇注精密铸造技术研究进展

摘要:离心铸造是将金属液注入高速旋转的铸型内,使其做离心运动充满铸型形成铸件的技术。根据转轴位置的不同,可将其划分为卧式和立式离心铸造。通过离心铸造的方式生产中空筒形和环形铸件及铸管等,生产效率高、成本低,且铸件组织细密。按照旋转轴位置分类,离心铸造可以分为水平(或卧式)离心铸造和立式离心铸造。立式离心铸造相较于卧式离心铸造占地小、操作方便、材料适用性好、工艺灵活性高,已有几十年的历史,最早用于生产火炮弹壳等军事产品。随着立式离心铸造技术的不断发展,已被广泛应用于民用领域。本文从关键技术、数值模拟、典型铸件3个方面,简述了国内外近几年立式离心铸造技术的研究进展,介绍了可铸金属的选择、铸造工艺设计、铸型选择与设计、离心铸造涂料、离心铸造机等的研究成果,呈现了光滑粒子流体动力学(SPH)法、粒子跟踪测速(PTV)法、夹杂物运动规律等方法在立式离心铸造数值模拟方面的应用,列举了双金属复合轧辊、锥段转鼓、大口径厚壁变径管等立式离心铸造技术的典型铸件案例。

高强度不锈钢的研究及发展现状

摘要:高强度不锈钢作为强度、韧性及服役安全性俱佳的金属结构材料,广泛应用于航空、航天及海洋工程等领域。本文系统地梳理了高强度不锈钢的研究及发展历程,重点阐述了以析出强化和奥氏体韧化为代表的强韧化机理,及以氢致开裂和H原子扩散富集为主要因素的应力腐蚀及氢脆敏感性问题。认为高强度不锈钢的未来发展将重点关注计算模拟设计,多类型、高共格度析出相复合强化,高机械稳定性的薄膜状奥氏体韧化,综合显微组织和服役环境加深对应力腐蚀及氢脆机理的理解,从而为设计兼备超高强韧性、优良综合服役性能的高强不锈钢提供实际的理论依据。

高温不锈渗碳轴承钢的研发现状与进展

摘要:航空用轴承钢向耐高温、耐腐蚀、高承载、长寿命方向发展,现役的M50轴承钢存在强度高但韧性和耐蚀性不足的问题;M50NiL渗碳轴承钢虽然通过降低碳含量和调整合金成分来提高韧性,但仍越来越无法满足高推重比的航空发动机的发展需求,并且耐蚀性不足问题也未解决。高铬不锈轴承钢GB-42和高氮 Cronidur30轴承钢虽然抗腐蚀能力好,但是表面硬度和心部韧性仍不足。以CSS-42L钢为代表的高温不锈渗碳轴承钢拥有高强韧性和优良耐蚀性能,不仅在航空轴承应用上极具竞争优势,而且也可应用于在高温或腐蚀性环境下使用的齿轮、轴和紧固件等,但是国内外相关研究工作仍不足且缺乏系统性,因此对其研发现状进行综述和总结尤为重要。从航空用高温轴承钢发展历程出发,详细介绍了国内外高温不锈渗碳轴承钢的研发背景和合金成分设计思路;综述了铬、钴、钼、镍、钒、钨等主要合金元素对组织和性能影响规律,其中钴的加入虽然不直接参与析出强化,但能够起到抑制δ-铁素体形成和促进弥散析出的特殊作用;分别从表面渗碳和心部材料两个方面,揭示了调控热处理工艺对微观组织和强韧性的影响规律。在此基础上,针对国内外高温不锈渗碳轴承钢基础理论和制造工艺研究的不足,提出了优化合金成分、突破渗碳热处理技术,以及加强不同工况下组织演变、疲劳损伤和破坏机理研究的研发方向。

机器学习在金属微观组织图像分割中的应用

摘要:介绍了机器学习在金属微观组织图像分析中的应用,梳理了微观结构的发展历程。重点介绍了传统机器学习方法、深度学习方法、大模型在微观组织图像分割中的应用并进行了详细的总结和举例说明。其中,深度学习方法可以自动提取高维度特征,快速地对批量图像进行准确分割,但存在数据依赖性强,通用性差等缺点,在一定程度上限制了该方法的推广和应用。大模型的出现为其缺乏泛化能力和过分依赖数据等问题提供了新的解决方向。通过分析大模型在金属微观组织图像分割的应用,指明了大模型在金属材料领域的丰富前景,并探讨了未来大模型的主要发展方向。

铸轧薄带的边部斜裂纹形成机理

摘要:为了控制铸轧薄带产品质量,降低铸轧工艺本征裂纹导致的断带风险,针对铸轧薄带的边部斜裂纹展开研究,提出边部斜裂纹形成的直接原因为侧封与熔池间的换热使熔池边部的Kiss点高度局部提升。该处薄带进入铸轧塑性变形阶段的初始厚度局部增大,由此引发的斜向剪应力导致了边部斜裂纹的产生。建立了熔池的热-流耦合数值仿真模型,分析了Kiss点高度沿铸轧辊宽度方向上的分布规律,结果显示熔池边部的Kiss点高度高于熔池中心。建立了热-力耦合数值仿真模型,分析了变厚度薄带热轧时其塑性变形区内的应力分布状况,结果显示斜向剪应力集中分布于后滑区边部,其方向与后滑区金属的流动方向致。仿真结果验证了所提出的边部斜裂纹形成机理的合理性。