CVD金刚石膜研究进展

摘要:金刚石由于其优异的声、光、电、热和力学性能,是重要的功能材料之一。金刚石的制备方法主要有高温高压方法和低压化学气相沉积方法。化学气相沉积法因制备得到的样品质量高、面积大,设备简单、可规模化等特性,是合成金刚石膜的重要方法。为了实现低合成压力条件下的金刚石膜的均匀、快速、大尺寸、高质量生长,目前研究人员在金刚石低压生长的控制方面做出了深入的研究。文章综述了近年来化学气相沉积法(包括热丝CVD 法、离子体增强CVD 法、燃烧火焰CVD 法)生长金刚石膜的研究进展,包括金刚石膜的生长机理、关键设备、关键工艺参数等。此外,还详细讨论了生长过程中的关键工艺参数与金刚石膜生长速率和质量的关系,这些对化学气相沉积制备金刚石膜的研究、生产至关重要。

多元素协同晶界扩散:现状与发展

摘要:航空航天、新能源、轨道交通等领域的发展对高性能高温度稳定性钕铁硼永磁提出了紧迫的需求。高性能磁体对战略重稀土Dy、Tb的依赖导致了中国稀土资源应用不平衡的现状,而晶界扩散技术可通过在晶粒表面形成重稀土壳层大幅提升矫顽力,是目前重稀土利用最高效的技术,近年来在国内外引起了广泛关注和大范围产业化推广。然而,目前产业普遍采用纯重稀土及其化合物作为扩散源,存在重稀土容易在表层堆积、扩散深度浅和利用效率低等问题。基于国内外最新进展和作者团队的研究工作,本文讨论了不同元素在钕铁硼中的冶金行为和扩散特性,提出利用轻稀土和非稀土元素部分替代重稀土形成合金扩散源的思路,通过多元素协同作用实现重稀土壳层局域化,大幅提升重稀土扩散效率,降低扩散成本。同时对不同元素在扩散过程中对磁体矫顽力、温度稳定性、力学性能和耐蚀性等方面的作用进行了阐述,并对未来发展方向进行了展望。

全固态离子选择性电极在可穿戴电化学传感器中的进展

摘要:人体汗液富含丰富的与身体健康状况相关的电解质, 采用可穿戴电化学离子传感器对汗液实时监测可为身体健康提供合理的指导。基于全固态离子选择性电极的可穿戴电化学传感器因能够实时无创地分析生物体液离子受到越来越多的关注。开发新的固接层材料, 探索新的电位响应机理及在可穿戴设备上的应用促进了全固态离子选择性电极的发展。本文综述了全固态离子选择性电极的研究进展, 包括传统的电位响应机理(氧化还原电容和双电层电容原理)和新型固接层材料(导电聚合物、碳和其他纳米材料)以及在可穿戴柔性传感器方面的应用。 最后对全固态离子选择性电极存在的挑战和未来的前景做出了展望。

高性能功率器件封装及其功率循环可靠性研究进展

摘要: 半导体技术的进步使得功率器件面临更高的电压、功率密度和结温,这对功率器件的封装的可靠性提出了更高的要求。如何提高和检测功率器件的可靠性已经成为功率器件发展的重要任务。提升器件封装可靠性主要围绕优化封装结构、改进芯片贴装技术和引线键合技术3个方向研究。功率循环作为最贴近功率器件实际工况的可靠性测试方法,其测试技术、参数监测方法和失效机理得到广泛的研究。对功率器件封装结构、封装技术以及功率循环机理的相关研究进行了综述,总结了近年国内外的提升封装可靠性的方法,并介绍功率循环测试的原理和钎料层、键合线的失效机理,最后对于功率器件封装的未来发展趋势进行了展望。创新点: (1) 从封装结构、芯片贴装和引线键合3 方面讨论了提升功率器件封装可靠性。(2) 总结了功率循环的控制参数、策略、检测参数和失效判据方面的研究。

晶圆键合设备对准和传送机构研究综述

摘要:随着微机电系统和3D集成封装的快速发展,多功能高性能器件、小体积低功耗器件、耐高温耐高压器件以及小型化高集成度器件是目前封装领域研究的重点。晶圆键合设备对于这些高性能、多功能、小型化、耐高温、耐高压、低功耗的集成封装器件的量产起着至关重要的作用,因此对晶圆键合设备及其对准机构和传送机构的研究也十分重要。介绍了常用的晶圆键合设备与晶圆键合工艺、对准机构和传送机构的工作原理以及主要的晶圆键合设备厂商现状,同时对晶圆键合设备对准和传送机构的发展趋势进行展望,其未来将朝着高精度、高对准速度、高吸附度和高可靠性的方向发展。

基于有机场效应晶体管的柔性传感器: 材料、机制与应用

摘要:有机场效应晶体管是一种优良的传感器载体, 具有丰富的传感机制和独特的电信号放大特性. 有机半导体具有质量轻便、机械柔性、可溶液加工、分子结构可调等优点, 适于制备低成本、大面积、多功能的柔性传感活性层. 基于有机场效应晶体管的各类柔性传感器已经广泛应用于智能穿戴、电子皮肤、生物检测、环境保护等领域. 本文总结了近年来柔性有机场效应晶体管传感器的研究进展, 从材料、机制和应用三个层面出发, 介绍有机半导体传感材料的设计原则、有机场效应晶体管的传感机制及其在化学、物理、生物领域的应用. 最后,总结了有机场效应晶体管传感器的研究现状和现存问题, 展望了有机场效应晶体管柔性传感器的未来发展方向.

超精密晶圆减薄砂轮及减薄磨削装备研究进展

摘要:在芯片制程的后道阶段,通过超精密晶圆减薄工艺可以有效减小芯片封装体积,导通电阻,改善芯片的热扩散效率,提高其电气性能、力学性能。目前的主流工艺通过超细粒度金刚石砂轮和高稳定性超精密减薄设备对晶圆进行减薄,可实现大尺寸晶圆的高精度、高效率、高稳定性无损伤表面加工。重点综述了目前超精密晶圆减薄砂轮的研究进展,在磨料方面综述了机械磨削用硬磨料和化学机械磨削用软磨料的研究现状,包括泡沫化金刚石、金刚石团聚磨料、表面微刃金刚石的制备方法及磨削性能,同时归纳总结了软磨料砂轮的化学机械磨削机理及材料去除模型。在结合剂研究方面,综述了金属、树脂和陶瓷3 种结合剂的优缺点,以及在晶圆减薄砂轮上的应用,重点综述了目前在改善陶瓷结合剂的本征力学强度及与金刚石之间的界面润湿性方面的研究进展。在晶圆减薄超细粒度金刚石砂轮制备方面,由于微纳金刚石的表面能较大,采用传统工艺制备砂轮会导致磨料发生团聚,影响加工质量。在此基础上,总结论述了溶胶-凝胶法、高分子网络凝胶法、电泳沉积法、凝胶注模法、结构化砂轮等新型工艺方法在超细粒度砂轮制备方面的应用研究,同时还综述了目前不同的晶圆减薄工艺及超精密减薄设备的研究进展,并指出未来半导体加工工具及装备的发展方向。

集成电路互连微纳米尺度硅通孔技术进展

摘要:集成电路互连微纳米尺度硅通孔(TSV) 技术已成为推动芯片在“后摩尔时代”持续向高算力发展的关键。通过引入微纳米尺度高深宽比TSV 结构,2.5D/3D 集成技术得以实现更高密度、更高性能的三维互连。同时,采用纳米TSV 技术实现集成电路背面供电,可有效解决当前信号网络与供电网络之间布线资源冲突的瓶颈问题,提高供电效率和整体性能。随着材料工艺和设备技术的不断创新,微纳米尺度TSV 技术在一些领域取得了显著进展,为未来高性能、低功耗集成电路的发展提供了重要支持。综述了目前业界主流的微纳米尺度TSV 技术,并对其结构特点和关键技术进行了分析和总结,同时探讨了TSV技术的发展趋势及挑战。

高端电子制造中电镀铜添加剂作用机制研究进展

摘要:铜互连电镀是芯片等高端电子器件制造的核心技术之一, 明晰相关镀铜添加剂的作用机制将促进先进铜互连技术的发展。本文针对硫酸镀铜体系, 侧重从方法学角度总结了加速剂、抑制剂、整平剂三类添加剂的界面吸附结构以及在电镀填铜过程中的微观作用机制, 分析讨论了不同研究方法的特点与局限性, 并归纳了芯片互连电镀过程中存在的科学问题, 为先进制程芯片电镀添加剂的研发提供参考。

高压电缆半导电屏蔽料研究进展及关键技术分析

摘要:作为高压电缆重要组成部分,半导电屏蔽层对高压电缆的运行稳定性和使用寿命具有至关重要作用。然而,我国高压电缆半导电屏蔽严重依赖进口,极大程度限制了我国高压电缆自主化生产。基于此,本文介绍了高压电缆半导电屏蔽料国内外发展现状,分析了高压电缆半导电屏蔽料材料组分( 基体树脂、导电炭黑和加工助剂) 的作用及关键评价指标,重点讨论了高压电缆半导电屏蔽料生产制造存在的技术瓶颈: 导电炭黑分散性、电阻率及其稳定性和表面光洁度。最后,对高压电缆半导电屏蔽料的发展方向进行了展望。本文全面系统地综述了高压电缆半导电屏蔽料的研究进展,有望为高压电缆半导电屏蔽料国产化设计与开发提供理论指导。