全球专用集成电路发展现状及趋势

摘要:2023年专用集成电路(ASIC)的市场规模和比重均达历史新高,持续增长的动力强劲。本文面向专用集成电路需求,从销售额、比重、细分应用领域发展分化等方面分析了ASIC的市场规模与分布,从终端需求、能源约束、供应链和价格等方面总结了ASIC兴起的主要驱动力。同时,提出ASIC发展的几个趋势:新一轮半导体上行周期将推动ASIC比重首次过半,领域专用架构、开源处理器指令集架构、芯粒成为半导体产业成长的主要技术驱动力,半导体产品“通久必专”推动产业模式“分久必合”。

溅射覆铜陶瓷基板表面研磨技术研究

摘要:溅射覆铜(Direct Plate Copper, DPC 陶瓷基板具有导热/ 耐热性好、图形精度高、可垂直互连等技术优势,广泛应用于功率半导体器件封装。在DPC陶瓷基板制备过程中,电镀铜层厚度及其均匀性、表面粗糙度等对基板性能及器件封装质量影响极大。对比分析了几种研磨技术对DPC陶瓷基板性能的影响,实验结果表明,砂带研磨效率高,但铜层表面粗糙度高,只适用于DPC陶瓷基板表面粗磨加工;数控研磨与陶瓷刷磨加工的铜层厚度均匀性好,表面粗糙度低,满足光电器件倒装共晶封装需求(粗糙度小于0.3μm,厚度极差小于30μm);对于质量要求更高(如表面粗糙度小于0.1μm, 铜厚极差小于10μm)的DPC陶瓷基板, 则必须采用粗磨+ 化学机械抛光(Chemical-Mechanical Polishing, CMP)的组合研磨工艺。

基于MXene电磁屏蔽材料的研究

摘要:电子设备的电磁辐射问题日益严重,开发高性能电磁屏蔽材料是现实的迫切需求。MXene由于其独特的层状结构、丰富的表面基团、优异的力学性能和突出的导电性,被认为在电磁屏蔽方面具有潜在的应用前景。为获得轻质、高效、稳定的电磁屏蔽材料,多种改性方法被用于提高MXene 材料的电磁屏蔽效能,如通过定量控制MXene层状结构构建三维多孔、多层和插层等多种形态,通过氧化、掺杂、热处理和接枝等手段调控MXene 表面终止基团及将MXene与其他材料杂化组装获得其他性能等。本文从结构设计、表面改性、复合杂化三方面综述了近几年国内外对MXene材料改性的研究进展,并对其提高电磁屏蔽效能进行了比较。

纳米金属氧簇EUV光刻胶及其性能影响因素

摘要:随着半导体行业的发展, 先进电子技术亟需更高电子元件密度的集成电路(integrated circuit,亦称积体电路). 在集成电路光刻技术(photolithography, 亦称微影技术)中, 图案化特征结构的尺寸主要取决于曝光光源的波长. 为将图形化尺寸推到更小的极限, 曝光光源的波长从紫外发展到极紫外. 近年来, 波长为13.5 nm的极紫外光(extreme ultraviolet, EUV)成为新一代光刻技术的光源, 是实现10 nm及以下制程的关键因素. 除光源和光刻机外,光刻胶(photoresist, 亦称光阻)也是决定图案化特征尺寸的重要因素, 其关键性能指标包括分辨率、灵敏度、线边缘粗糙度和线宽粗糙度等. 目前适配于EUV光源的光刻胶主要有聚合物、分子玻璃和金属基材料等几类, 其中,纳米金属氧簇EUV光刻胶具备高灵敏度、高分辨率和低粗糙度等性能, 成为半导体集成电路行业的研究热点.本文主要介绍近年来纳米金属氧簇EUV光刻胶体系的组成、结构特征及其性能影响因素, 采用多种表征手段,从分辨率、灵敏度和粗糙度等角度阐述光刻胶成分结构及环境因素对光刻过程及图案形成的影响, 多层次了解其光刻机理及性能平衡策略.

增强型GaN HEMT器件的实现方法与研究进展

摘要:考虑到实际应用对可靠性、设计成本及能耗的要求,增强型GaN高电子迁移率晶体管(HEMT)器件比传统耗尽型GaN HEMT器件优势更显著。目前有许多方法可以实现增强型GaNHEMT 器件,如使用p 型栅技术、凹栅结构、共源共栅(Cascode) 结构、氟离子处理法、薄势垒AlGaN层以及它们的改进结构等。分别对使用以上方法制备的增强型GaN HEMT器件进行了综述,并对增强型GaN HEMT器件的最新研究进展进行了总结,探索未来增强型GaN HEMT器件的发展方向。

保湿抗冻型导电水凝胶在柔性电子方面的研究进展

摘要:近年来,柔性电子材料得到了快速发展,导电水凝胶因其突出的导电性、柔韧性、亲肤性等已被广泛的应用于该领域。然而,类似于传统的水凝胶,大多数导电水凝胶仍面临在极端环境下应用受限的瓶颈问题。因此,许多学者对水凝胶的保湿/抗冻行为进行了研究,并设计制备了一系列保湿抗冻型导电水凝胶。本文对近年来保湿抗冻导电水凝胶的制备策略进行了总结及归类,详细阐述了提升水凝胶温度适应性的潜在机制;重点对耐温型水凝胶在柔性电子领域的应用进行了综述,包括运动感知、健康监测、智能识别与人机交互等;并且对现阶段保湿抗冻型导电水凝胶面临的机遇和挑战进行了探讨和展望,旨在为新型耐温型导电水凝胶的构筑提供新的思路,可望开发出综合性能优异的导电水凝胶,进一步推动其在柔性电子领域中的实际应用。

半导体聚合物纳米点生物荧光成像探针进展

摘要:荧光成像技术因其非侵入性、高时空分辨率和高灵敏度,在生命科学研究领域中备受关注 .作为荧光成像技术的基础工具,发展高性能的荧光探针成为提高成像质量的关键途径之一 .随着纳米材料科学领域的迅速发展,荧光纳米颗粒探针因其克服了传统有机染料和荧光蛋白在荧光效率和光稳定性方面的不足,逐渐成为荧光成像领域的有力竞争者 .近年来,半导体聚合物纳米点 (Pdots)因其粒径小、亮度高、稳定性强等特性在荧光纳米探针领域中备受瞩目 .本文首先回顾了 Pdots的发展历程和制备策略,并总结了 Pdots作为荧光纳米探针在光物理特性上所具备的优势 .此外重点介绍了 Pdots作为一类性能优异的荧光纳米探针在荧光标记成像、超分辨荧光成像和活体生物成像中的最新应用进展 .最后,分析了当前 Pdots作为荧光探针存在的一些优点和局限性,并探讨了该类纳米探针在未来存在的主要发展方向和应用前景,为 Pdots在生命科学成像领域中的更广泛应用开辟新的可能性 .

氧化镓材料与功率器件的研究进展

摘要:氧化镓(Ga2O3)以其禁带宽度大、击穿场强高、抗辐射能力强等优势,有望成为未来半导体电力电子领域的主力军。相比于目前常见的宽禁带半导体SiC和GaN,Ga2O3的Baliga品质因数更大、预期生长成本更低,在高压、大功率、高效率、小体积电子器件方面更具潜力。对Ga2O外延材料、功率二极管和功率晶体管的国内外最新研究进行了概括总结,展望了Ga2O3在未来的应用与发展前景。

穿戴电子可拉伸材料的制备与应用

摘要:可拉伸材料的出现解决了智能设备的刚性问题,使得智能设备能够实现柔弹性。综述了超薄材料、织物以及生物可降解材料等可拉伸材料的最新研究进展与发展方向,包括超薄材料、织物材料、生物可降解材料等;介绍了可拉伸材料在可拉伸电极、储能设备及晶体管传感器等方面的应用;指出可拉伸材料存在材料导电性和拉伸性的平衡问题、可拉伸电极的不透气性和舒适度较差问题,探讨了其未来发展的机遇与面临的挑战。

混合颗粒吸热器的综合光学性能研究与优化

摘要:为降低高温吸热器太阳光反射和红外辐射散热损失,提高吸热温度和效率,设计并加工了一种石英玻璃切角拉西环颗粒。结合石英玻璃球和氮化硅球,通过分层堆叠,组建了R5B0、R4B1、R3B2、R2B3、R1B4、R0B5六种混合颗粒吸热器。采用颗粒尺度光线跟踪模型,结合实验测量验证,对混合颗粒吸热器的综合光学性能及其影响因素进行研究。结果表明,石英玻璃切角拉西环颗粒能显著降低聚集太阳光反射损失,而石英玻璃球能有效抑制红外辐射损失。R5B0的聚集太阳光反射损失较R0B5低10% 左右,而R0B5的红外发射率较R5B0低3.7%~9.7%(工作温度范围为800~2500 K)。在不同工作温度下,最高热效率对应的吸热器类型不同。在低温工作段,R5B0热效率最高,而在高温工作段(>2175 K),R0B5热效率最高。由于石英玻璃对太阳辐射吸收低,石英玻璃颗粒吸收的太阳能份额仅占3.0%~6.5%,对降低石英玻璃颗粒的工作温度、维持光学性能具有重要的现实意义。