芯片用金刚石增强金属基复合材料研究进展

摘要:随着电子设备集成化程度越来越高,对高导热封装材料的需求也越来越大,金刚石增强金属基复合材料凭借其高导热性能成为研究焦点。然而,由于金刚石颗粒与金属基体之间的不润湿特性,具有高导热性的金刚石增强金属基复合材料难以制备。文中综述了金刚石增强金属基复合材料的研究进展,包括界面改性、工艺参数优化和复合材料制备方法,并指出了金刚石增强金属基复合材料目前存在的问题和今后的研究方向。

煤基富氧多孔炭纳米片的制备及其超级电容器性能

摘要:多孔炭电极的表面改性与优化是实现超级电容器优异性能的关键。本文以煤化学工业的固体副产物为碳源,利用二维层状双氢氧化物(MgAl-LDH)的刚性约束作用耦合KOH 活化工艺成功制备了二维富氧多孔炭纳米材料(OPCN)。系统研究了炭化温度对OPCN 样品微观结构和表面特性的影响,通过SEM、TEM、氮气吸脱附测试以及元素分析等表征手段对炭材料的结构/组成和表面特性进行分析表明,经700 °C 炭化获得的炭材料样品(OPCN-700)具有较高的氧质量分数(24.4%)和大的比表面积(2 388 m2 g−1),并表现出良好的润湿性。同时,OPCN-700 样品丰富的微孔和二维纳米片结构为电解质离子提供了有效的储存和传输途径。作为超级电容器的电极材料,在电流密度为0.5 A g−1 时,其比电容高达382 F g−1,并呈现出优异的倍率性能和循环稳定性。该技术策略为富氧原子掺杂二维多孔炭材料的可控制备与水系储能器件的设计构建提供了新思路。

硅基SiC薄膜制备与应用研究进展

摘要:碳化硅(SiC)材料具有极为优良的物理、化学及电学性能,可满足在高温、高腐蚀等极端条件下的应用,碳化硅还是极端工作条件下微机电系统(MEMS)的主要候选材料,成为国际上新材料、微电子和光电子领域研究的热点。同时,碳化硅有与硅同属立方晶系的同质异形体,可与硅工艺技术相结合制备出适应大规模集成电路需要的硅基器件,因此用硅晶片作为衬底制备碳化硅薄膜的工作受到研究人员的特别重视。本文综述了近年来国内外硅基碳化硅薄膜的研究现状,就其制备方法进行了系统的介绍,主要包括各种化学气相沉积(Chemical vapor deposition,CVD)法和物理气相沉积(PPhysical vapor deposition,PVD)法,并归纳了对硅基碳化硅薄膜性能的研究,包括杨氏模量、硬度、薄膜反射率、透射率、发光性能、电阻、压阻、电阻率和电导率等,以及其在微机电系统传感器、生物传感器和太阳能电池等领域的应用,最后对硅基碳化硅薄膜未来的发展进行了展望。

碲锌镉晶体的铟碲共掺杂退火研究

摘要:针对生长态碲锌镉晶体缺陷密度大和电学性能无法满足室温核辐射探测器的制备要求等问题,研究了铟碲共掺杂退火对碲锌镉晶体碲夹杂和电学性能的影响。利用分子动力学方法模拟了不同温度下铟原子在碲锌镉晶体中的扩散过程,获得了铟原子的扩散系数表达式,计算了铟原子扩散至碲锌镉晶体所需理论时长,在此基础上开展了铟碲共掺杂退火实验,进一步优化了退火工艺。实验结果表明,铟碲共掺杂退火70 h的碲锌镉晶体碲夹杂密度下降至27.61mm-2,体电阻率接近1011Ω·cm、漏电流低于4 nA(400V),电学性能达到核辐射探测器应用要求。

微波介质陶瓷产业体系发展研究

摘要:微波介质陶瓷作为微波电路中的电介质,是现代通信技术中的关键基础材料,广泛应用于通信、导航、雷达、卫星等领域。本文在分析国内外微波介质陶瓷及产业发展现状的基础上,剖析了当前我国微波介质陶瓷发展面临的问题,提出了涵盖发展目标、发展思路、重点发展方向以及发展路线图的微波介质陶瓷产业体系自立自强发展战略。为促进微波介质陶瓷的发展,实现我国微波介质陶瓷产品由中低端为主向高端型升级转变,突破高性能微波介质陶瓷制备技术及上游高纯原材料的自主化生产技术,建议加强微波介质陶瓷的基础研究和应用研究、强化重点微波通信领域的创新研发、积极布局第六代移动通信用介质陶瓷和加强产业生态建设。

多材料体系三维集成光波导器件

摘要:随着高速光通信、智能光计算和灵敏光探测等领域的快速发展,光子集成系统正成为重要发展趋势,其对于单元器件性能、系统集成度和可拓展性提出了更高的要求。多材料体系三维集成技术突破了传统单一材料体系的器件性能限制以及二维加工与集成技术的面积与集成度限制,有望实现高速率、高效率、高密度以及低功耗的新型光电集成系统。本文围绕三维堆叠技术和飞秒激光加工技术这两类主要的多材料体系三维集成光波导技术,首先介绍了基于层间耦合器的三维光学耦合技术与三维集成光波导器件,然后介绍了基于三维堆叠技术的光电融合集成器件(光发射机/接收机、波分复用收发器、光互连模块),进一步介绍了基于飞秒激光直写技术的三维集成光波导器件(偏振复用器、模式复用器、扇入/扇出器件、拓扑量子器件)。这些三维集成技术为提升系统性能、提高系统集成度以及降低系统功耗提供了有效的解决方案,从而在先进光通信和光信号处理等领域具有广泛的应用前景。

柔性可穿戴传感与智能识别技术研究进展

摘要:柔性可穿戴传感器件能与人体稳定集成, 具有多生理参数和运动参数连续动态测量能力, 可在健康监测、运动监控、精准医疗、人机交互等领域发挥重要作用。柔性可穿戴传感器件与人工智能技术的结合, 充分展示了利用连续动态多参数信号测量的进行疾病、动作、语音等判定与识别的优势。本文通过介绍柔性可穿戴器件在物理信号、化学信号和图像信号传感中应用, 从硬件平台和数据处理分析技术两方面介绍了柔性可穿戴器件与人工智能结合的方法和进展, 展示了基于柔性可穿戴传感系统的智能识别技术, 分析了柔性可穿戴传感与智能识别技术在柔性化集成、数据传输、能源供应等方面面临的诸多挑战, 并对未来发展趋势进行了展望。

先进封装中铜-铜低温键合技术研究进展

摘要: Cu-Cu低温键合技术是先进封装的核心技术,相较于目前主流应用的Sn 基软钎焊工艺,其互连节距更窄、导电导热能力更强、可靠性更优。文中对应用于先进封装领域的Cu-Cu低温键合技术进行了综述,首先从工艺流程、连接机理、性能表征等方面较系统地总结了热压工艺、混合键合工艺实现Cu-Cu低温键合的研究进展与存在问题,进一步地阐述了新型纳米材料烧结工艺在实现低温连接、降低工艺要求方面的优越性,概述了纳米线、纳米多孔骨架、纳米颗粒初步实现可图形化的Cu-Cu低温键合基本原理。结果表明,基于纳米材料烧结连接的基本原理,继续开发出宽工艺冗余、窄节距图形化、优良互连性能的Cu-Cu低温键合技术是未来先进封装的重要发展方向之一。创新点: (1) 系统地总结了热压工艺、混合键合工艺实现Cu-Cu低温键合的研究进展。(2) 阐述了新型纳米材料烧结连接的基本原理、典型方法及工艺优势。

高粘附可拉伸高分子材料与高动态稳定人体电生理监测

摘要:高动态稳定人体电生理监测在智能可穿戴健康监测、心血管疾病临床诊断、神经系统疾病治疗以及智能人机交互等领域具有广阔的应用前景。作为人与外部环境的信号交互桥梁, 皮肤电极可贴合于皮肤表面, 以无创的方式监测和采集各种电生理信号, 成为高动态稳定电生理监测的理想平台。从材料角度出发, 皮肤电极的高动态稳定性决定于基底材料的高粘附性和可拉伸性。因此, 如何通过高分子结构的合理设计制备高粘附可拉伸高分子材料, 构筑高度共形粘附于人体皮肤表面的电极, 从而实现高动态稳定人体电生理监测, 是柔性智能健康监测领域的重要研究方向。本文总结了本课题组近年来在高粘附可拉伸高分子材料制备及其在高动态稳定人体电生理监测应用方面的研究进展, 并讨论了高粘附可拉伸高分子材料在下一代柔性智能健康监测领域面临的机遇和挑战。

基于碳材料的多维度柔性应变/压力传感器的研究进展

摘要:近年来,基于碳材料的柔性应变/压力传感器发展迅速,在临床疾病诊断、健康监测、电子皮肤和软机器人等智能可穿戴领域内具有广阔的应用前景。本文综述了基于碳纳米材料和生物衍生碳材料的柔性应变/压力传感器的制备方法和性能特征。根据碳材料的维度和结构特点,可将传感器划分为三大类型:一维纤维/纱线型、二维薄膜/织物型和三维多孔/网络型。本文还重点评述了不同维度碳基柔性传感器的研究进展和存在的问题。未来柔性传感器的发展重点将聚焦于新型结构设计、综合性能提升和多模式功能化应用。