机器视觉技术在航空装配中的应用现状与展望

摘要:机器视觉技术凭借其非接触、高精度和自动化的特点,在航空装配中得到了广泛应用。本文从视觉测量、视觉引导和视觉检测3 个方面综述了机器视觉技术在航空装配中的应用现状。视觉测量通过捕捉部件的图像信息实现位姿测量、外形尺寸检测及孔位精度控制,可以提高装配精度、减少装配错误。视觉引导通过图像分析准确判断装配机器人或其他设备的相对位姿,提高自动化程度。视觉检测用于识别装配过程中的错漏装、多余物以及装配损伤等问题,以确保最终产品的质量。在未来的航空装配领域中,视觉技术将结合其他传感器与人工智能技术构建数字化测量系统,进一步提升装配的效率和精度。

7000系超高强铝合金的发展及其航天工程化应用展望

文摘:回顾了7000系超高强铝合金在国内外的发展历程,并简要概述了几种典型铝合金在我国运载火箭中的应用实例。结合当前7000系铝合金在我国航天结构系统工程化应用的实际情况,分析了存在的问题,并据此提出了值得关注的研究方向及相关建议。

机器学习技术在航空材料领域的应用

摘要:机器学习技术在航空材料领域具有广阔的发展前景,并在材料选择、设计和优化等方面发挥着重要作用。首先简要论述机器学习技术在航空领域中的优势和潜力,概述机器学习的技术发展、算法类别和特征及其局限性,介绍机器学习在科学研究中,特别是复杂材料数据形式下的常规的或潜在的应用。其次,主要关注机器学习在航空材料领域的研究现状,探讨近年来利用机器学习辅助高温合金材料、高强度结构材料、热防护涂层材料及功能与智能材料的研究进展,并阐述机器学习驱动航空材料研究的策略和方法。最后,对机器学习辅助航空材料研发所面临的挑战进行展望,通过推动数据资源的开放共享、深化领域知识和物理规律在机器学习模型中的融合,以及不同类型数据的特征一致性转换,助力航空材料研究向大数据驱动的材料科学第四范式转型。

高温合金GH4169超声喷丸强化表征与热影响分析

摘要: 针对改善高温合金GH4169 表面完整性的问题,对高温合金GH4169 试样进行了超声喷丸和热暴露试验。首先,进行了覆盖率为98%~125%、喷丸强度为0.15 A和0.25 A的超声喷丸试验。然后,对试样分别进行了250、400、550 ℃的1 h 和10 h 的热暴露试验,最后研究了超声喷丸对高温合金GH4169 表面粗糙度、硬度、微观形貌和残余压应力的影响,并分析了热暴露后残余压应力的变化。研究结果表明,经超声喷丸后,高温合金GH4169 表面发生塑性变形,表层硬度显著提高。近表层晶粒细化明显,晶粒尺寸由表层至深度呈梯度分布,并在表层引入残余压应力。当喷丸强度从0.15 A提升至0.25 A时,晶粒细化程度提升了29%。高温合金GH4169 经过高温热暴露后,表层残余压应力发生热松弛,最大松弛速率发生在热暴露初期阶段,之后便趋于稳定,与热暴露时间无关。热暴露温度越高,近表层残余热松弛越剧烈,最大残余压应力深度位置越大。

太空探索技术公司运载火箭机构技术发展路线分析及启示

摘要:近年来,重复使用运载火箭的高速化发展和航天运输的商业化趋势对运载火箭机构技术的发展提出了迫切需求。美国太空探索技术(SpaceX)公司的机构技术经历了“猎鹰”系列运载火箭和超重-星舰运输系统的演进与验证,已获得了具有重要价值的实证结果。通过剖析SpaceX公司运载火箭机构技术的演化历程、发展路线及未来方向,揭示运载火箭重复使用需求下机构技术发展的关键要素。面向中国运载火箭复用化、商业化的发展,提出面向新功能需求的机构正向设计、面向新性能需求的机构系统优化、面向新产能需求的机构货架建设等的发展路线。

智能航空发动机——本体智能化技术概述

摘要:智能化能提升什么、智能化的核心技术是什么、智能化靠什么实现,是目前在航空发动机领域应用智能技术面临的三个核心问题。本文从理解智能化思维与传统思维模式区别的角度去阐明上述三大问题,梳理航空发动机本体智能化的功能效用、核心技术和实现途径。通过文献梳理,总结出智能航空发动机与传统航空发动机的最大区别,即不在于结构和工作原理上的改变,而在于通过智能手段对数据利用的广度、深度和速度。可以进一步理解为,智能航空发动机摆脱了机械思维模式下追求参数因果关系的技术思路,转而追求大数据、多维度、高实时下的多源异构信息的关联性,从而能在常规技术水平下发挥出航空发动机的最佳性能,在新技术的匹配下更能实现发动机的性能跨越。

空间环境对高性能纤维力学性能及结构的影响

摘要:增阻球离轨是一种处理低地球轨道(LEO)空间碎片问题的有效手段,采用高性能纤维一体化织造工艺制作增阻离轨球能够有效改善拼接结构的曲面不规整问题。在离轨周期中,高性能纤维材料将长期受到低地球轨道中高低温交变、原子氧(AO)辐照等环境因素的影响。为探究LEO 环境中高低温交变和原子氧辐照两种主要的空间环境因素对高性能纤维结构和性能的影响,选择空间环境适应性好的纤维进行织造,测试研究了聚酰亚胺纤维、聚芳酯纤维Vec-tran、聚芳酯纤维Yokolar 3种有机高性能纤维经过高低温交变处理和原子氧辐照处理的力学性能、表面形貌及化学结构变化。高低温交变处理后3 种纤维强力降低,但强力保持率均高于70%;纤维表面观察到轻微的颗粒、沟槽等缺陷;红外光谱特征峰形状无明显变化,化学结构基本稳定。原子氧辐照后3 种纤维的力学性能损失幅度均高于40%,且发黏变硬、柔性变差;聚酰亚胺纤维表面存在大量凹凸起伏和粗细不匀且有明显的侵蚀孔洞,在两种聚芳酯纤维表面观察到原纤化劈裂和剥离;处理后纤维的红外光谱中出现新的特征峰,部分原有特征峰强度减弱或消失,3 种纤维的化学结构均被破坏。3种高性能纤维均具有较好的耐高低温性能,但原子氧辐照对3 种纤维的结构和性能均造成了严重破坏,需要进一步探究高性能纤维原子氧防护的处理方法。

高速柔性气动减速器关键技术研究进展

摘要:柔性气动减速技术是航天器高速进入地外天体或再入地球大气安全着陆的关键核心技术,随着中国载人航天和深空探测等重大任务的持续推进,航天器更快的进入速度和更重的载荷对于高速柔性气动减速器的需求日益迫切。而高速柔性气动减速器的力学模型兼具强非线性和强耦合特性,且涉及研究领域极广,如需考虑钝性和多孔结构的气动特性、非线性结构动力学、可压缩湍流、结构气动热及其相互耦合等问题。因此,开展高速柔性气动减速器的基础理论和关键技术研究具有极大的难度和复杂性但意义重大。首先对高速柔性气动减速器进行分类;然后分析梳理了高速柔性气动减速技术的技术内涵,并系统地回顾和综述了其关键技术的发展历史和研究进展;最后,对高速柔性气动减速器关键技术的未来发展方向和亟需解决的关键问题进行了总结展望。

氢能源无人机关键技术研究进展

摘要:氢能源无人机作为新能源动力无人机中最具发展潜力的机型之一,其发展与绿色航空概念以及低空经济场景联系紧密。总结了氢能源无人机发展过程中涉及的关键领域和技术问题,并对相关研究进行了总结和梳理,旨在为氢能源无人机设计提供参考。首先对氢能源无人机的发展历史、技术优势、应用场景和常见机型进行了概述。然后以总体设计技术、结构设计技术、动力系统设计技术以及飞行控制技术4 大技术领域中涉及氢能源无人机的关键问题进行了分类探讨,分析了每个领域中所面临的技术前沿问题和国内外研究人员目前的相关研究。最后结合相关技术进展,对氢能源无人机的发展提出了建议与展望。研究表明,氢能源无人机的发展潜力仍未被完全发掘,需要多学科、多领域共同发力,发挥氢能在无人机增加续航时间、降低机载质量和助力绿色航空发展等方面的关键作用。

气动推力矢量喷管研究近况和发展趋势

摘要:推力矢量技术是未来飞行器特别是高机动飞行器的关键技术,其核心部件是推力矢量喷管。气动推力矢量喷管通过流动控制实现喷管出口气流偏转,具有革命性优势,并可进一步衍生出短距/垂直起降、反推等多种功能以适应更丰富的应用场景。通过数十年的研究,气动推力矢量喷管逐步经历了概念设想、初步探索、机理研究和工程实验等阶段,其技术成熟度不断提高,正朝着初步工程应用发展。着重介绍了近年来具有代表性的国内外研究人员在多种气动推力矢量喷管上的研究成果,探讨了气动推力矢量喷管的发展趋势和未来研究重点,指出需要进一步加强内部流场的机理研究,攻克包含多目标、多学科综合优化和飞行器、发动机与气动推力矢量喷管的整机匹配等在内的关键技术,推进工程应用,以期为气动推力矢量喷管技术的应用提供参考。