柔性锌离子电池在可穿戴传感器中的应用研究进展

摘要:可穿戴传感器在运动、医学、康复等多个领域的应用极大地方便了对人体运动指标信号的捕捉和监测,有效避免了运动损伤,降低了就医频率甚至挽救了许多生命。随着可穿戴传感器的应用和普及,与之适配的柔性能源供应系统成为其发展的关键。近年来研究者们基于不同的能量释放方式,研究和设计了多种柔性能源供应系统,其中柔性锌离子电池以其高能量密度、高弹性模量、高循环稳定性和高安全性在众多供能体系中脱颖而出,成为可穿戴传感器最具潜力的柔性能源供应系统之一。本文综述了柔性锌离子电池近年来在可穿戴传感器方面的研究进展,主要介绍和总结了电池各组件(集流体、电极(正极、负极)、隔膜、电解质、封装)的材料类型、特点以及与可穿戴传感器集成的应用情况,最后讨论了柔性锌离子电池目前面临的问题和挑战。

与硅基技术兼容的二维过渡金属硫族化合物电子器件

摘要:作为现代信息社会的物理基石, 以硅基材料为核心的集成电路极大推动了人类现代文明的进程. 但是, 随着晶体管特征尺寸微缩逐渐接近物理极限, 传统硅基材料出现了电学性能衰退、异质界面失稳等挑战, 导致集成电路数据处理能力提升难、功耗急剧增加等问题产生. 超薄二维过渡金属硫族化合物(transition metal dichalcogenides,TMDCs)具有表面平整无悬挂键、电输运性能优异、静电控制力强、化学性质稳定等优势, 可有效解决上述问题, 被认为是后摩尔时代集成电路的最具潜力候选材料之一. 目前, 二维TMDCs集成电路研究在多个关键领域均取得了突破性成果, 但距离产业化应用仍需要克服一些挑战. 本文着重介绍了二维TMDCs材料与电子器件在集成电路应用的各方面优势, 系统阐明了二维TMDCs集成电路在材料控制生长、范德华界面优化以及器件设计构筑等方面的关键科学问题, 提出了相应解决办法和应对措施, 分析了二维TMDCs集成电路产业化进程中的综合性挑战, 明确了“与硅基技术兼容”二维TMDCs集成电路发展路线的优势、可行性与突破方向.

超级铝热剂在固体推进剂中的应用研究进展

摘要:超级铝热剂具有高放热和高活性的特点,其反应速率和能量释放效率均显著高于传统铝热剂,应用于固体推进剂有望改善释能速率、效率、感度等指标,已成为固体推进剂的发展方向。总结了超级铝热剂的制备工艺、特点及其工业化应用潜力;论述了超级铝热剂在固体推进剂中的适用性;综述了超级铝热剂的微结构( 燃料/ 氧化剂界面控制、核壳结构、多层膜结构)和组分(金属氧化物、氟材料、碳纳米材料)对固体推进剂燃烧性能和能量释放的影响。超级铝热剂的添加显著提高了热反应活性和放热量,增强了推进剂的点火及燃烧性能,同时存在工业生产成本高、工艺控制要求复杂、燃烧过程精密控制难度大等问题,展望了未来超级铝热剂在固体推进剂中应用的研究重点和发展方向。

用于Li-CO2电池的过渡金属及其合金催化剂研究进展

摘要:【目的】提升锂-二氧化碳(Li-CO2)电池的反应可逆性和动力学特性,概括Li-CO2电池的简史、结构、工作原理以及关键科学问题,综述用于Li-CO2电池的过渡金属及其合金催化剂的成分、形貌、微观结构等特性及其对Li-CO2电池性能的影响,分析过渡金属及其合金催化剂在催化过程中的作用机制和演化行为。【研究现状】过渡金属对反应物吸附与活化、 放电产物沉积及分解具有促进作用。基于过渡金属元素构筑的单金属和双金属正极催化剂,在Li-CO2电池中的催化活性、作用机制及其自身在催化过程中的演化各不相同。金属间化合物具有显著区别于固溶合金、单分散双金属、单一金属的化学微环境,因此在促进反应物种吸附与活化、产物分解等方面表现出独特优势。【结论与展望】过渡金属及其合金催化剂的未来研究方向有:调控催化剂宏观形貌和表面微结构;监测催化过程中催化剂结构与成分演化、放电产物沉积与分解行为;建立适用于Li-CO2电池的催化剂关键“描述符”;开发低成本催化剂量产工艺。

基于B7-H3 靶点的放射免疫治疗研究进展

[摘要] 近年来,放射免疫治疗( radioimmunotherapy,RIT) 因其精准靶向治疗而备受关注。寻找特异性免疫治疗靶点分子用于放射免疫治疗是一种极具临床应用价值的治疗模式。B7-H3( CD276) 是B7 家族中的一种免疫检查点,因其独特的表达特性和生物学功能,成为RIT 药物的一个理想候选分子。[关键词] B7-H3; CD276; 放射免疫治疗; 靶向治疗; 肿瘤

固态电解质锂离子输运机制研究进展

摘要:全球环境问题推动了可充电锂电池技术的飞速发展. 与液态电解液相比, 固态电解质不易燃, 构筑所得固态电池的安全性能得以提升. 如果能够理解固态电解质中的离子输运行为, 就能精准调控固态电池锂的动力学稳定性和倍率性能. 随着计算机技术的快速发展, 原子尺度模拟技术成为理解材料离子输运的重要手段。关键词:固态电池; 固态电解质; 密度泛函理论计算; 分子动力学模拟

基于深度学习的超材料设计及光纤光束控制研究进展

摘要:超材料设计和光纤光束控制是光场调控研究的两个重要议题。传统方法取得一定研究进展的同时,也面临着有效性和适应性的问题。为弥补传统方法的不足,研究者们尝试将深度学习方法应用于以上两个议题。基于深度学习进行超材料设计和光纤光束控制的方法,具有速度快和自动化程度高的优势,为光场调控集成化、智能化提供新思路。关键词:材料;光纤光学;神经网络;光场调控;超材料设计;光学系统控制

人工智能赋能激光:现状、机遇与挑战

摘要 近年来,人工智能科技的普及为激光领域的科技教育注入了新动力,进一步推动了激光行业的快速发展并拓宽了应用范围。介绍了人工智能对激光领域的赋能效果,并对未来两个学科的双向赋能进行了初步分析和展望。关键词 激光技术;人工智能;机器学习;智能控制;优化设计

缺陷二维材料强度

摘要:材料失效是固体力学关心的核心问题之一, 强度准则是描述材料失效的重要工具. 二维材料如石墨烯、六方氮化硼、过渡金属二硫化物等具有优越的力学性能, 在能源环境、电子信息、航空航天、纳米器件等领域都有重要的潜在应用. 二维材料缺陷不可避免, 由于其原子级厚度和极低的离面刚度, 缺陷残余应力会导致显著的应力集中和离面变形, 从而显著降低材料的强度. 尽管断裂力学理论被广泛用来描述二维材料的脆性断裂, 但研究发现六方氮化硼的能量释放率超过Griffith预测值一个量级, 与经典断裂力学理论预测不符. 另一方面, 虽然晶界强度理论解释了晶界强度随缺陷密度增加而反常升高的现象, 位错堆积模型揭示了多晶石墨烯强度与晶粒尺寸间的赝Hall-Petch效应, 但这些理论模型主要针对特定缺陷在单轴载荷下的失效行为, 缺乏普适性. 特别地, 二维材料缺陷结构、加载状态多样, 导致复杂的应力分布和变形失效模式, 增加了建立普适性强度理论的难度. 然而, 从原子角度, 材料失效的本质都是化学键发生断裂, 特别是大部分二维材料都由共价键构成, 因此从化学键失效的角度, 得到化学键失效的本征标度, 则有可能建立缺陷二维材料的统一强度理论. 本文首先综述了近年来二维材料强度的相关实验、模拟和理论研究进展, 着重介绍了缺陷二维材料的变形机理和基于化学键失效分析的缺陷二维材料统一强度准则. 最后, 本文讨论了二维材料强度理论的发展趋势, 旨在促进缺陷二维材料强度准则的理论和应用研究.

2050铝锂合金板材拉伸力学性能三维各向异性

摘要:随着铝锂(Al-Li)合金在航空航天领域的应用愈发广泛,对其各向异性研究有助于Al-Li合金的进一步开发利用。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、电子背散射衍射(EBSD)等对T3态2050Al-Li合金板材进行显微观察,通过拉伸实验对合金板材轧制方向、垂直轧制方向、厚度方向的拉伸力学性能三维各向异性进行研究.。关键词:2050Al-Li合金;轧制;力学性能;各向异性;织构