智能辊压成形装备(系统)及其应用案例分析

摘要: 辊压成形是一种通过顺序排布的成形模具渐近横向弯曲金属带材和板材的塑性加工工艺。由于其低成本、高效率、柔性化的特点,已成为中国新能源、航空航天、轨道交通等多个领域实现轻量化、节能、减排和安全性提升的重要技术之一。但是,该工艺的工序复杂性和离散性、材料厚向性能的不均匀性、设备信息化和柔性化自动化的低水平等问题,导致了它类似于“黑匣子”,使得产品质量难以预测,调试生产高度依赖人工经验,可成形截面受限,成品率不稳定。为此,本文提出了一种数据驱动的智能辊压成形装备(系统),并介绍了该装备(系统)的技术架构和特点。通过搭建基于人工智能的数据架构,该系统将传统辊压成形中的离散数据进行采集、筛选、集成、储存和分析。同时融合数字孪生、人工智能、轮廓检测技术和多智能体协同控制等来构建可以替代人工经验的自纠偏的生产模式。针对新能源汽车行业,本文给出了利用该系统解决的一个辊压成形的动力电池包结构件的回弹控制案例,并对该系统的发展给出了建议和展望。

电弧熔丝增材制造控形技术研究现状与展望

摘要: 金属增材制造是制造强国战略下推动我国高端装备制造业转型升级的重点发展方向。电弧增材制造以其高沉积效率、低成本、可进行复杂结构直接成形等优势受到了广泛的关注。但增材过程中涉及的物理过程复杂,成形质量与精度面临很大挑战。针对电弧增材制造技术短流程、长周期的制造特征,讨论如何从热源上降低成形偏差、从过程上降低制造误差、从结果上改善成形精度,介绍了一系列创新的热源调制、过程控制与结果优化的方法策略,总结了现有技术存在的问题与面临的挑战,为如何进一步提升电弧增材过程的成形控制效果提出了几点思考。

金属磁记忆检测的关键技术研究现状与展望

摘要:金属磁记忆检测技术是一种绿色无污染、可检出早期应力集中、隐性损伤以及宏观缺陷的全寿命无损检测技术,经过20多年发展,已取得众多研究成果并应用于压力容器、石油管道、铁路桥梁、能源电力、航空航天等重要领域。针对金属磁记忆检测技术近年来的热点与难点问题,从理论基础到工程应用中的关键技术出发,归纳总结了磁记忆检测技术的机理、信号降噪与特征提取,以及机器学习在磁记忆检测评价中的应用等方面的研究现状,并对磁记忆检测技术亟待解决的关键难点问题与未来发展方向进行了探讨。

增材制件内流道精整加工技术研究进展

摘要:金属增材制造技术在航空航天领域具有复杂内流道的构件成形上具有广阔的应用前景,然而具有复杂内流道的增材制件的精整加工是工业应用的瓶颈问题。分析了内流道机械抛光技术、化学与电化学抛光技术、电解质等离子抛光技术的加工原理、关键技术及国内外研究进展。针对增材制件内流道精整加工需求,分别研究了机械抛光技术、化学与电化学抛光技术、电解质等离子抛光技术的适应性问题及探索方向。针对增材制件内流道精整加工关键技术发展趋势提出了展望:①研究针对功能梯度材料、多金属材料的增材制件内流道精整加工技术;②研究针对具有复杂几何形状、内部复杂分叉、渐变毛细结构、拓扑结构等复杂内流道的复合精整加工技术或组合加工技术;③研究针对内流道精整加工质量的高精度检测方法和几何误差的三维重构技术。

超疏水表面加工技术及耐磨性能研究进展

摘要:当前制备的超疏水表面耐磨性能普遍较差,因而其在各领域的应用受到限制。研究表明微纳结构和低表面能是实现功能表面超疏水性能的关键因素,因此,首先基于超疏水表面作用机制,对超疏水表面织构进行了归纳,旨在通过优化表面织构来解决微纳结构易磨损难题;然后对超疏水表面加工技术进行了梳理总结,从成本和效率两个方面分析了降低表面能的措施,为拓展超疏水表面加工体系提供思路;进而详细总结了超疏水表面耐磨性的分析手段,并阐述了提高超疏水表面耐磨性的方法;最后,展望了耐磨性超疏水表面的未来发展前景,以期推动超疏水表面在工程中的大规模应用。

焊接机器人焊缝跟踪方法及路径规划研究

摘要:焊缝自主跟踪是机器人焊接智能化的关键,其精度是评价焊接质量的重要指标。焊接对象或条件的改变对精度的影响最为直接,尤其当焊件表面存在缺陷时会产生较大的跟踪误差。为此,开展焊接机器人焊缝跟踪方法及路径规划研究,提出焊缝跟踪的4步法:1)利用激光传感器扫描坡口,获取轮廓数据。2)接着通过组合滤波算法,运用限幅滤波和高斯滤波处理数据以平滑噪声。3)采用导数法初步定位特征点,通过寻找第1阶和第2导数极值点以定位第1类和第2类特征点;以初步定位获得的特征点为分界点,分段拟合坡口轮廓数据,计算各拟合线段的交点进而得到精确定位的特征点。4)通过传感器位姿标定,确定其相对末端坐标系的位置,借助转换矩阵将传感器检测到的焊缝特征点转化到基座标系下,得到机器人的空间定位点;运用3次样条插值法生成焊枪末端轨迹,并驱动机器人按照预定轨迹运行,进而实现焊缝的有效跟踪。通过实验验证直线与曲线焊缝的跟踪效果,结果表明:初步定位时,跟踪误差约为0.628 mm、0.736 mm,经精确定位后,误差降为0.387 mm、0.429 mm,提升幅度分别超过38.4%、41.7%;且焊枪的抖动现象得到减弱,达到自动焊接误差≤0.5 mm的精度要求,表明了文中所提出跟踪方法的有效性,可为焊缝的高精度跟踪和自动焊接研究提供有益参考。

面向材料的超精密金刚石切削加工机理

摘要:采用超精密单点金刚石切削加工技术制备超光滑表面在国防尖端和航空航天等领域具有重要应用. 当前缺乏对超精密加工机理的理解, 极大地制约着超精密加工技术的提高. 金刚石切削加工是一个刀具与材料高度耦合的过程, 工件材料的性能对加工结果具有重要影响. 本文研究了具有不同属性和微结构的典型材料超光滑表面的金刚石切削加工机理: (1) 研究了多晶金属铜金刚石切削加工中的非均质特性, 重点关注了晶界对表面创成的影响机制及其抑制策略; (2) 研究了单晶硅和单晶碳化硅金刚石切削加工中的脆塑转变机理, 重点关注了超声椭圆振动辅助切削加工技术对硬脆材料延性加工性能的提升; (3) 研究了反应烧结碳化硅和铝基碳化硅金刚石切削加工中的各相材料协同加工变形机制, 重点关注了振动辅助和切削路径对复合材料表面创成的影响规律. 本文的研究成果为不同材料超光滑表面的超精密金刚石切削加工创成提供了理论依据.

机器人谐波减速机柔性轴承用钢的超高旋转弯曲疲劳强度的研究

摘要:采用电弧炉生产工艺,控制废钢/铁水比为80%以上,开发出长寿命机器人谐波减速机柔性轴承用钢,从非金属夹杂物、奥氏体晶粒度、碳化物带状组织方面对比柔性轴承用和传统滚动轴承用钢的冶金质量,并利用旋转弯曲疲劳试验的方法测试柔性轴承用和传统滚动轴承用钢在107循环周次条件下的疲劳强度。机器人谐波减速机柔性轴承用钢的w[O]<0.0004%,w[Ti]<0.001%,A类硫化物类非金属夹杂物≤1.0级,B类和D类氧化物类非金属夹杂物≤0.5级,极值统计法预测最大球状夹杂物的尺寸<30μm,检验结果表明柔性轴承用钢具备超高纯净度。通过在冶炼过程增加Al和N的元素含量,柔性轴承用钢具有10级的奥氏体晶粒度,远高于传统滚动轴承用钢的8.5级晶粒度。通过延长高温扩散时间,7.1和7.2级别的碳化物带状组织占比要高于传统滚动轴承用钢,超高晶粒度和碳化物带状组织的带宽减小表明柔性轴承用钢具备超高组织均匀性。柔性轴承用钢在107循环周次条件下具有超高旋转弯曲疲劳强度为1016 MPa,疲劳寿命略高于传统滚动轴承用钢。

金属3D打印技术正在成为模具制造智能化的关键技术

摘要:金属3D打印是最具代表性的增材制造技术,其工程应用有助于提高复杂精密模具的数字化、智能化设计制造水平。由于与模具制造业有着共同的产业特征,所以金属3D打印技术正在成为模具高效、高精度制造的新关键技术。我国的模具行业正在以推动3D打印制模技术创新发展为契机,提升模具产业基础高级化和产业链现代化,推动模具产业由大转强。

基于视觉传感的焊接机器人焊缝识别跟踪技术研究现状

摘要:焊缝识别跟踪技术是未来焊接机器人的一个重要发展方向,对于焊接机器人的自动化、智能化焊接具有重要推动作用。从机器人传感技术、焊缝识别及焊缝特征提取技术、机器人跟踪控制技术等方面,对相关技术特征、国内外发展现状及未来发展方向作了较为系统的阐述。其中,焊缝的实时识别及焊缝特征提取技术是焊缝识别跟踪控制系统的核心,而噪声处理也是焊缝识别与特征提取的关键;基于激光视觉的主动传感、优质的焊缝特征提取算法、图像去噪技术以及稳定的跟踪控制系统,是焊缝识别跟踪系统稳定可靠工作的重要保证;可进行多类型焊缝识别、自适应性好、抗干扰能力强是推动相关技术大范围推广普及的重要基础;多焊缝识别技术、多层次特征提取智能学习算法等是焊缝识别跟踪技术的未来发展方向之一。