碳量子点上转换材料的制备及其应用研究进展

摘要: 碳量子点(CQD)具有化学惰性,生物相容性和低毒性等优势,可能在能源、生物医药等领域得到广泛的应用.CQD可通过表面被聚合物( 例如PEG)钝化而表现出很强的光致发光特性.在生物成像,疾病检测和药物输送中使用表面钝化后的功能化生物分子更为有效.并且碳材料由于其优异的电化学性能还展现出在催化、电子器件等许多领域广泛的应用前景.我们将对近年来碳量子点发光材料的研究进行总结,并讨论碳量子点在能源、环境和其他一些领域的应用.

水润滑陶瓷主轴研究现状与关键技术

摘要:介绍了水润滑陶瓷主轴的概念和特点,概述了水润滑陶瓷主轴在国内外的发展趋势和工业应用,对水润滑陶瓷主轴的关键技术和急需解决的问题从4个方面进行了评述,主要包括:1)材料摩擦学方面,需加强对低成本、高性能水基润滑添加剂、高韧性硅基陶瓷材料、长寿命陶瓷涂层的研究;2)轴承润滑建模与分析方面,需综合考虑陶瓷零件加工精度、水基润滑剂非牛顿效应、高速湍流效应、温黏效应等因素,实现精确建模与分析;3)高速主轴轴承-转子系统非线性动力学方面,需借助降阶分析理论的最新成果,实现系统非线性行为的精准预测与调控;4)表面织构在水润滑陶瓷主轴上的应用方面,需加强对表面织构和宏观结构的协同效应、表面织构的设计与优化,以及陶瓷表面织构的低成本高效加工方法的研究。

太赫兹超材料及其成像应用研究进展

摘要:电磁超材料因具有特殊的物理性质以及在电磁波操控方面的重要应用而备受关注。本文综述了太赫兹超材料及其成像应用的研究进展:首先介绍了太赫兹超材料的研究概况,重点讨论了可调谐与可重构太赫兹超材料、太赫兹数字编码与现场可编程超材料的研究进展;在此基础上,阐述了太赫兹超材料在成像领域的应用,包括基于超表面透镜、超材料吸波器、可重构超表面和现场可编程超表面的太赫兹成像技术;最后讨论了太赫兹超材料及其成像应用发展趋势。功能可重构及智能化将是太赫兹超材料的重要发展方向,而新兴的信息超材料融合了超材料与信息技术也将使太赫兹成像更加高效便捷。

超声能场在金属增材制造组织性能调控中的应用

摘要:针对金属增材制造构件存在微观组织缺陷、残余应力及各向异性等问题,各种组织性能调控技术应运而生。结合近年来超声能场对增材制造组织性能调控的研究工作,详细分析了超声能场在增材制造过程中的“液– 固”双重效应,总结了超声能场对增材制造金属材料的显微组织及其表面粗糙度、显微硬度、残余应力、耐腐蚀等性能的影响。研究表明,超声能场使材料内部组织晶粒显著细化、孔隙率降低、耐腐蚀性能提高;同时使增材制造构件显微硬度升高,应力状态向有利于构件性能的残余压应力转变。

高熵超导体研究进展

摘要:高熵材料是近年来许多领域研究的一类新型材料, 高熵的原理为材料的设计和性能定制提供了更大的自由度. 高熵材料主要有高熵合金和高熵陶瓷. 自2014年第一个高熵超导体被发现以来, 超导电性一直是高熵材料领域的研究热点之一. 人们在一些高熵超导体中观察到了许多奇特的物性, 如高压下超导转变温度Tc基本保持不变、极强电声耦合的超导电性、能带结构中存在狄拉克点等. 然而, 高熵超导材料的研究才刚刚开始, 仍存在许多未知. 另外, 元素组成和平均价电子数对高熵超导体的Tc起着重要作用. 高熵合金的超导行为似乎不同于常规合金超导体、铜氧化物超导体、铁基超导体和非晶体超导体, 表明它们可以视为一类单独的超导体. 结合高熵材料的优异力学和物理性能, 高熵超导体有望在极端条件下服役. 本文简要介绍了高熵合金超导体、高熵陶瓷超导体和高熵超导体薄膜的最新研究进展, 并对高熵超导体进行了初步的展望. 我们相信在高熵超导材料这一研究领域将会发现许多新的物理现象.

基于超材料的无标记光学生物传感

摘要:超材料(metamaterials)因为能够在亚波长尺度范围内精细调控电磁波而受到人们广泛关注。超材料具有丰富的电磁模态,在表面支持高度局域场增强且对周围介电环境极其敏感,可应用于无标记光学生物传感领域。与传统光学生物传感器相比,超材料生物传感器具有小型化、集成化、高度灵敏、多功能可定制等突出优点。本文总结了近年来超材料生物传感器在可见光、近红外、中红外以及太赫兹波段的研究进展,包括折射率生物传感、表面增强拉曼散射、表面增强红外吸收和太赫兹生物传感等。

纳米生物润滑剂微量润滑加工物理机制研究进展

摘要:纳米生物润滑剂作为替代矿物型润滑介质的绿色微量润滑剂,已成为学术界与工业界的研究与关注焦点。然而,纳米生物润滑剂微量润滑加工物理学作用机制尚不清楚,难以为其工业化应用提供精准指导与选用原则。为解决上述需求与技术问题,综述了纳米生物润滑剂组分及物理特性,揭示了纳米增强相、基础流体、添加剂对加工性能的影响规律,阐述了纳米增强相在纳米生物润滑剂中的动力学行为与分散机制。其次,揭示了多能场雾化机制、切/磨削区流场分布及微液滴浸润动力学行为,发明了微量润滑新型供给与雾化装置。进一步地,分析了切/磨削加工材料去除热物理机制,研究了先进的多场赋能热损伤抑制策略,构建了纳米生物润滑剂微量润滑加工技术体系。结果表明,纳米生物润滑剂在热源抑制与热耗散特性调控方面效果显著,多场赋能纳米生物润滑剂微量润滑可作为浇注式加工的替代工艺,采用断续有序的凹槽织构砂轮辅助质量分数为2.5%的MWCNTs-棕榈油纳米生物润滑剂微量润滑磨削单晶镍基高温合金DD5,与传统的浇注式磨削工艺相比,磨削力可降低12%,磨削温度可降低9%,表面粗糙度值可降低6%。展望了纳米生物润滑剂发展路线图,为工业界与学术界提供技术支持与理论指导。

全球合成生物行业发展前沿分析

摘要:合成生物学在经历早期的技术创新和初步商业化探索后,于 21 世纪的第二个十年迎来了高速发展和商业化落地。该文从市场规模、行业融资和行业发展 3 个方面对全球合成生物学行业现状进行了梳理和分析。分析显示,在市场规模上,合成生物学市场增长迅猛,但其规模在不同的地理区域和行业领域内均有明显差距;在行业融资上,合成生物学行业投融资趋势呈明显上升态势,2020 年合成生物学行业的投融资事件数量和金额均创下历史记录,但不同地理区域之间的发展仍不平衡;在行业发展上,合成生物学的落地应用场景十分多元,已扎根各行各业,并展现出巨大的应用潜力。

铁性智能材料的研究现状和发展趋势

摘要: 铁性智能材料是具有感知温度、力、电、磁等外界环境并产生驱动效应的一类重要功能材料,主要包括形状记忆、磁致伸缩和压电3 大类材料。由于历史原因,形状记忆、磁致伸缩和压电等3类铁性智能材料却被分散在马氏体、铁磁和铁电等几个不同领域独立研究,只能借助各自领域的有限思路进行材料研发,虽取得不少成果但逐渐遭遇到原理性瓶颈。近年来,国际上出现了将3 类铁性智能材料作为一个统一体进行研究的新趋势,文章将结合现代产业和国防技术对形状记忆材料、磁致伸缩材料和压电材料的要求以及遭遇到的瓶颈问题,对铁性智能材料研究现状和发展趋势进行综述,并由此可望提供高性能铁性智能材料的物理新机制。

超高真空下纳米石墨烯磁性及调控

摘要:纳米石墨烯在磁学上的优异表现开始获得了更多的关注和研究。由于不饱和电子的存在,磁性纳米石墨烯的湿法化学法合成难度提高,借助超高真空下的表面催化,可以精确地实现将设计好的前驱体分子向磁性纳米石墨烯转变。相较于过渡金属的磁性,纳米石墨烯拥有更高的自旋波刚度、更弱的自旋⁃轨道耦合作用、更为精细的耦合作用、更长的自旋寿命,使其在自旋电子器件以及基础研究领域拥有很高的研究潜力。由于不饱和电子的存在,提高了湿法化学法合成出磁性纳米石墨烯的难度。近年来,借助超高真空下的表面催化,可以精确地实现将设计好的前驱体分子制备成磁性纳米石墨烯。进一步地,可以利用通过针尖操纵以及将磁性纳米石墨烯进行连接形成二聚体或者磁性链来进行磁性调控和研究。本综述结合近几年超高真空下纳米石墨烯的磁性研究,介绍了纳米石墨磁性的产生和利用超高真空扫描隧道显微技术对其结构和磁性的表征,以及在此基础上对纳米石墨烯磁性的磁序调控。