纳米生物润滑剂微量润滑加工物理机制研究进展

摘要:纳米生物润滑剂作为替代矿物型润滑介质的绿色微量润滑剂,已成为学术界与工业界的研究与关注焦点。然而,纳米生物润滑剂微量润滑加工物理学作用机制尚不清楚,难以为其工业化应用提供精准指导与选用原则。为解决上述需求与技术问题,综述了纳米生物润滑剂组分及物理特性,揭示了纳米增强相、基础流体、添加剂对加工性能的影响规律,阐述了纳米增强相在纳米生物润滑剂中的动力学行为与分散机制。其次,揭示了多能场雾化机制、切/磨削区流场分布及微液滴浸润动力学行为,发明了微量润滑新型供给与雾化装置。进一步地,分析了切/磨削加工材料去除热物理机制,研究了先进的多场赋能热损伤抑制策略,构建了纳米生物润滑剂微量润滑加工技术体系。结果表明,纳米生物润滑剂在热源抑制与热耗散特性调控方面效果显著,多场赋能纳米生物润滑剂微量润滑可作为浇注式加工的替代工艺,采用断续有序的凹槽织构砂轮辅助质量分数为2.5%的MWCNTs-棕榈油纳米生物润滑剂微量润滑磨削单晶镍基高温合金DD5,与传统的浇注式磨削工艺相比,磨削力可降低12%,磨削温度可降低9%,表面粗糙度值可降低6%。展望了纳米生物润滑剂发展路线图,为工业界与学术界提供技术支持与理论指导。

浅议从“系统工程”角度看纳米材料科学的应用之路

摘要:近20年来纳米材料科学的蓬勃发展以碳纳米管和石墨烯的研究为典型代表。如何将纳米材料在微观尺度的优异性能在宏观尺度进行良好表达,得到性能优异的商业化产品?这也给科技工作者带来极大的困惑。纳米材料科学在发展初期受“自下而上”方法论的影响,极大地促进了纳米材料科学的发展,然而其局限性限制了纳米材料的应用之路,“系统工程”的思想应运而生,为解决纳米材料的应用这一难题提供了新的方法论。从“系统工程”的角度来看,在微观尺度上性能优异的纳米材料,若要在宏观尺度取得相应优异的性能,实现商业化应用以造福人类,首先纳米材料的应用需要借助于多级结构,其次在纳米材料的应用研究中应以研究体系中各个组分之间的相互关系为侧重点。按照“系统工程”的思想,对纳米材料的研究应该侧重于根据宏观材料的需求,研究出最优化的结构单元组装方式,最大限度地发挥每种结构单元的优点,最终实现体系的效益最大化。

PAN基碳纤维的发展及国内外第3代高性能碳纤维的进展

摘要:经过半个多世纪的发展,聚丙烯腈(PAN)基碳纤维经历3代产品的发展,2010年以来研发成功的第3代碳纤维实现了高强度和高刚度特性的有效结合,有望成为未来高性能碳纤维材料发展的重点。介绍了PAN基碳纤维的发展阶段及主要制造商,阐述了兼具高强度和高模量特征的第3代碳纤维的研发背景。同时介绍了国内外在第3代碳纤维领域的发展历程,展望了碳纤维的未来研发方向,随着2024年初东丽M46X型碳纤维研发成功,第3代碳纤维产品序列有望进一步拓展;此外,面向太空电梯等前沿领域,国外也在开发更高强度碳纤维。

增材制造专用陶瓷材料及其成形技术

摘要: 陶瓷材料具有高强度、耐磨损、耐腐蚀和耐高温等特点,在航空航天、生物医疗和电子信息等领域具有良好的应用前景。然而,如何制造应用于上述领域的复杂形状陶瓷零件成为了一个重要的问题。目前,增材制造正逐步成为解决复杂形状陶瓷零件制造问题的有效方式。主要介绍了增材制造专用陶瓷材料及其成形技术。根据增材制造专用陶瓷材料的不同形态,可以将陶瓷材料分为粉材、丝材、片材和浆料/膏材4类。基于此,介绍了激光选区烧结(SLS)、激光选区熔化(SLM)、三维喷印(3DP)、熔融沉积制造(FDM)、分层实体制造(LOM)、立体光固化(SL)、数字光处理(DLP)以及直写成形(DIW)8类主要陶瓷增材制造技术及其应用。最后,根据陶瓷增材制造的最新研究成果,对增材制造专用陶瓷材料及其成形技术发展作出进一步的展望。

功能包装材料的发展现状与趋势

摘要: 由于包装废弃物造成的环境污染以及食品质量安全问题频发等原因,具有基本力学性能的普通包装已经满足不了消费者对包装产品的需求,具有功能性的包装受到极大关注。包装具备的功能性不仅在于包装结构的设计,更重要在于包装材料的选用。随着新型材料和新技术的开发,包装具有的功能性趋向多元化,应用市场更为广泛。综合了近几年功能包装材料的相关研究,从包装材料的应用出发,按照包装的功能性将功能包装材料分为4大类: 阻隔包装材料、绿色包装材料、保鲜包装材料以及智能包装材料,并分别概述了各类包装材料的特点、应用现状以及发展趋势。最后,综述了功能包装材料的发展现状,指出了功能包装材料在食品领域和医疗领域广阔的应用前景,同时提出未来功能包装材料应致力于向食品安全、绿色环保以及集成多功能化包装等方向研究。

相变储能材料研究进展

摘要:当今社会高速发展,化石燃料资源枯竭带来的能源供需缺口不断增大,亟需开发具有可再生能力的清洁能源。相变储能材料是解决热能供需矛盾、缓解能源危机最合适的材料之一。本文回顾了相变储能材料的分类方法,介绍了代表性相变储能材料的熔点及储热性能。同时分析讨论了通过封装及复合载体材料提升相变储能材料储热性能和稳定性的一些策略。此外,介绍了相变储能材料在食品工业、路面系统、空调系统及建筑领域的应用现状。

沉淀强化高熵合金研究进展

摘要:高熵合金是一类由多种主要元素共同组成的新型金属材料,其具有独特的微观结构和可调性能,在国内外已获得广泛关注。沉淀强化被证明是提高高熵合金屈服强度的一种非常有效的手段,并且沉淀相和基体之间的共格界面对于实现强度和塑性的良好结合非常重要。合理控制沉淀相的类型、形状、大小和体积分数是提高合金强塑性的关键因素。研究证实,采用不同的轧制、退火和时效等热处理工艺可调控合金的基体微观组织、沉淀相特征。沉淀强化高熵合金虽然表现出优异的拉伸性能和热稳定性,但目前对其疲劳、蠕变和氧化行为及相关机理等尚不清晰。因此,应对材料进行综合评价以促进性能优越的高温器件的合理设计和制造。使用计算模拟的方式对沉淀相的元素分布、电子结构、成键状态等内在特性进行量化研究,对沉淀相的演化过程进行针对性的预测和控制,有助于合理设计合金成分体系。本文综述了沉淀强化高熵合金的相形成、力学性能、热稳定性和计算机建模等方面的研究进展,归纳总结了相关问题,对今后设计沉淀强化高熵合金具有一定的指导意义。

石墨烯:化学与结构功能化

摘要:石墨烯是由单原子层二维单晶结构构成的一种新型纳米材料,具备光学、力学等优异性能,但其疏水性和生物不相容性限制了其在诸多领域的应用。为解决这一问题,石墨烯功能化成为近年来的研究热点。功能化石墨烯包括石墨烯的衍生物氧化石墨烯、石墨烯聚合物复合材料、转角石墨烯、石墨烯气凝胶、超韧性石墨烯等,主要是在石墨烯材料基础上,通过物理化学处理、结构改进对材料本身进行改性,使其功能化。功能化石墨烯具有优良的光电性能,包括高灵敏度、高响应度、高探测度等,可用于工业检测和监控、三维形貌测量、生物医学等邻域。重点讨论了功能化石墨烯的性质、制备方法,介绍了石墨烯功能化的最新进展。同时,对目前功能化石墨烯所面临的挑战和机遇做了展望。

液态金属的多功能化

摘要:液态金属是在室温或常温下处于液态的金属,又被称为低熔点金属。由于具有优越的导热、导电、润滑等性能,液态金属被应用在散热器、电池、3D打印、柔性机器人、磁流体发电、电磁屏蔽和生物医疗等领域,有着广阔的应用前景。各种新型多样的研究不断涌现。液态金属基塑料、合金等复合材料的问世也进一步推动了液态金属的发展。但是,液态金属的应用发展也面临瓶颈问题:腐蚀其他金属、密度大、质量大、原料储备种类数量过少等。本文综述了液态金属的多功能化的研究进展,并对液态金属的研究方向及应用前景进行了展望。

纳米纤维素产业化进展及市场趋势分析

摘要:近年来,随着人们对可再生生物质资源转化利用的日益重视,纳米纤维素因其独特的性质而受到广泛关注。本文主要介绍了纳米纤维素国内外的产业化进展,并简要分析了纳米纤维素未来几年的市场趋势及面临的主要问题。