铅、镉、砷复合污染土壤修复技术研究进展与展望

摘要: 随着工业、农业、采矿业和城市化的快速发展,大量重金属等污染物进入土壤环境系统,由此引发的土壤重金属复合污染问题备受关注。全面掌握重金属复合污染现状、污染特征及修复技术手段, 对重金属污染防治和土壤的安全利用具有重要意义。综述了Pb,Cd,As复合污染土壤现状,阐述了污染来源及在土壤中的分布特征与迁移转化特征;归纳总结了物理修复法、固化/稳定化修复法和生物修复法在Pb,Cd,As复合污染治理方面的研究进展;论述了对各种土壤修复技术的优缺点和适用场景,并对未来发展方向进行了展望。相较而言, 固化/稳定化修复技术因处理效率高、成本低廉、施工简单等优点成为国内外复合污染土壤修复的主流技术。同时,中国金属矿山规模化消纳需求迫切,综合地区特色利用当地矿山固废研发新的固化/稳定化材料治理Pb,Cd,As复合污染土壤已成为目前固化/稳定化技术领域重点研究方向之一。

自钝化钨合金高温氧化性能研究现状

摘要:钨因具有高熔点、高硬度和优良的抗离子溅射性能,被选为聚变堆面向等离子体第一壁的重要候选材料。但是钨的抗氧化性能较差,严重限制了其工程应用。通过添加钝化元素制备自钝化钨合金,可形成保护性氧化膜改善其抗氧化性能。与纯钨相比,自钝化钨合金的抗氧化性能提高了2~4个数量级。近年来,研究者从成分设计和成分优化对自钝化钨合金开展了大量研究, 取得了丰硕成果。通过添加Si或Cr制备的W-Si或W-Cr二元自钝化钨合金,因可形成SiO2 或Cr2O3 保护膜,其抗氧化性能明显提高。在二元自钝化钨合金基础上,通过添加活性金属元素如Y,Zr改善氧化产物与合金基体的结合力,发展了三元和四元自钝化钨合金,进一步改善了其抗氧化性能。总结归纳了自钝化钨合金的研究进展,从氧化前后显微结构、物相分析、氧化增重等方面论述了其氧化过程及机制。在此基础上,指出了自钝化钨合金面临的问题并对其发展前景进行了展望。

新型ECAP工艺制备超细晶材料研究进展

摘要:等径角挤压(equal channel angular pressing,ECAP)因可制备出超细晶材料而受到界内广泛关注。其制备出块体超细晶材料具有优异的力学性能与耐腐蚀性能,目前已在航空航天、生物医疗、机械电子等领域得到率先应用,成为国内外材料学者研究的热点。然而, ECAP技术在发展和应用过程中仍然受到多重限制。对ECAP工艺进行优化与改进已成为发展趋势。初期,诸多学者通过实验研究证明:新型ECAP可达到“一次挤压,多次应变”的效果,晶粒细化更加明显,可制备出力学性能优异的材料。近年相关学者采用有限元模拟方法,探究新型ECAP技术的影响因素,从而对生产进行指导。本文评述了近年来国内外新型ECAP制备超细晶材料相关研究进展,从工艺原理出发,将新型ECAP工艺分为工艺优化与模具改进两大类,重点对7种不同新型ECAP工艺及研究现状进行归纳总结,对不同ECAP工艺后超细晶材料的显微组织、力学性能进行深入分析, 最后对新型ECAP制备超细晶材料过程中存在的问题与今后的研究方向进行总结与展望,以期为开发晶粒细化效果更佳、生产效率更高的剧烈塑性变形技术提供参考。

铁捕集铂族金属合金的电化学回收工艺研究

摘要:低温铁捕集技术是一种从废催化剂中富集铂族金属(PGMs)的有效技术。然而,铁捕集得到的铁-铂族金属合金具有硬度大、惰性高的特点,导致溶解缓慢。此外,废催化剂中的Mn,Ni,Cr等杂质元素也会进入到合金中,造成后续分离困难。本文以铁-铂族金属合金为原料,利用金属间的电化学性质差异,研究直流电解回收铁、阳极泥酸浸和电沉积分离提纯铂族金属。结果表明,Fe2+的氧化以及阴极析氢反应是电解阶段主要的副反应。在电压为1.0 V, 初始Fe2+浓度为0.7mol·L−1,温度为60℃条件下,经2 h电解,铁-铂族金属合金质量损失和阴极电流效率分别达到34.78%和62.97%。合金中的碳等杂质形成外层抑制了离子扩散,阻碍铁溶解。电解后,PGMs由于高电负性难以氧化- 络合溶解, 被富集在阳极泥中。阳极泥经酸浸、过滤后进行直流恒压电沉积, 当电压为0.45 V时,沉积物主要为Pd,微观形貌呈枝状;随着电压的增加,阴极析出Pt和Rh, 沉积层呈块状堆积。在0.65 V下电沉积3h可回收61.83%的Pt,77.28%的Pd以及55.20%的Rh,实现了杂质的去除;动力学研究表明Pd的电极反应速率受扩散过程控制。本文研究为废催化剂中铂族金属的高效、环保回收提供了可靠的新方法。

铱纳米颗粒制备技术及应用研究进展

摘要:铱纳米颗粒(Ir NPs)凭借熔点高、稳定性好、抗腐蚀性强、催化活性高、 选择性好以及良好的生物相容性等优点在电催化、传感、化学反应和生物医药等诸多领域得到了蓬勃发展,已经逐步成为了国防建设和新技术产业中不可或缺的关键材料之一。目前Ir NPs的制备技术主要有化学还原法、光化学还原法、电化学还原法、热分解法、水热/溶剂热法、微波辅助合成法和离子液体法。本文阐述了近年来这些制备工艺的研究现状,不仅对各工艺的优缺点进行详细讨论,同时也基于现有报道的学术见解和工业应用实践,将各工艺从合成速率、规模化(经济性)、形貌尺寸的可控性以及环保性这4个方面进行比较,优选出比较适合工业化发展的理想工艺。最后归纳Ir NPs及其复合材料的应用领域,指出拓展Ir NPs更潜在的应用价值以及开发更加新型环保的制备手段是未来发展的一个重点方向,为后续的研究提供有力的支撑。

W-Cu复合材料的应用现状及掺杂改性的研究进展

摘要:W-Cu复合材料因具有高的硬度、耐磨性、抗烧蚀性能、导电性和导热性以及低热膨胀系数等综合性能而被广泛应用于多种工业领域。本文介绍了W-Cu复合材料的最新研究进展及其在电触头、微电子、军事、功能梯度材料方面的应用现状,着重总结和分析了目前W-Cu复合材料掺杂改性的分类及原理,以及掺杂改性对材料性能的影响,最后提出了W-Cu复合材料未来发展的潜在问题和值得关注的研究方向。

真空蒸馏提纯金属镱的理论及实验研究

摘要:采用Miedema模型研究了真空蒸馏提纯金属镱过程中Ca、Mg、Mn等杂质的分离特性及分离规律,并根据理论分析结果开展了不同温度下镱的真空蒸馏提纯实验。计算结果表明:在1000℃以下杂质Fe、Al、Cu、Ni与Yb的饱和蒸气压差值Δp* 极大,而杂质Mg、Ca、Mn与Yb的Δp* 很小;随着温度降低,分离系数βCa,Yb逐渐增大,而分离系数βMg,Yb和βMn,Yb保持稳定,杂质Mg、Ca、Mn的挥发速率急剧下降。实验结果表明,在700℃下真空蒸馏可有效去除金属镱中的杂质Mg、Ca、Mn。

无添加制备超粗晶碳化钨工艺研究

摘要: 采用无添加方式经高温氢还原制备超粗晶钨粉,对还原过程和钨粉质量进行分析,探讨了工艺条件对钨粉质量的影响。将钨粉与炭黑均匀混合、压制后分别在2 100 ℃和2 300 ℃下进行碳化,对比不同温度所得碳化钨的微观组织。结果表明:在1 300 ℃以上和较高的水汽分压条件下能够产出平均粒度为30 μm 以上、粒度均匀且团聚少的钨粉。在较高温度下碳化能够产出成分单一、耐磨性好、缺陷少的超粗晶碳化钨粉。2 300 ℃下所得碳化钨制备的硬质合金平均粒度达到8.1 μm,比2 100 ℃下所得碳化钨制备的硬质合金具有更高的抗弯强度和抗冲击磨损性能。

高纯钽靶材的制备及其织构研究

摘要: 根据国内外文献分析了晶粒度和织构对钽靶材溅射产出率的影响,认为晶粒细小且均匀的钽靶材具有较高的溅射产出率。采用高纯钽锭通过大变形锻造并结合轧制和真空退火制备钽靶材,并借助金相显微镜和EBSD 技术对钽靶材的微观组织、晶粒度和织构组成进行了分析。结果表明:通过增大铸锭锻造变形量可使钽靶材在厚度方向获得细小而均匀的晶粒,同时织构在厚度方向均匀地随机分布。

真空蒸馏分离杂质提纯金属钪研究

摘要: 采用Miedema混合焓模型进行热力学计算,获得了金属钪中各元素的饱和蒸气压、杂质元素与Sc的分离系数以及蒸馏挥发速率,分析了真空蒸馏提纯金属钪过程中Fe、Al杂质的分离特性及规律。根据理论分析结果,在蒸馏温度为1 550~1 700 ℃、真空度小于10-3 Pa的条件下进行金属钪的真空蒸馏提纯实验。计算结果表明,杂质Mg、Ca、Mn、Ni与主元素Sc的饱和蒸气压差值较大,易于真空蒸馏分离,而饱和蒸气压与Sc相近的Fe和Al杂质难分离;在1 550~1 700 ℃范围内杂质Fe、Al与Sc的分离系数均远小于1,且随着蒸馏温度的升高逐渐增大,不利于Sc与Fe、Al分离;随着蒸馏温度的升高,Sc与杂质Fe和Al的挥发速率均逐渐增大,且杂质随其含量升高挥发速率进一步增大。实验结果表明真空蒸馏可有效去除金属钪中的杂质Fe和Al,使其残留在渣相中。