TZM合金力学性能调控的研究进展

摘要: TZM合金具有熔点高、强度大、线膨胀系数小、耐蚀性强以及高温力学性能良好等特点,是应用最为广泛的钼合金之一,在许多领域具有不可替代的作用。本文从TZM合金的研究现状出发,在钼合金热加工成型与强化理论基础上,综述了TZM合金的制备方法、力学性能的调控方法、显微组织的调控以及研究的最新进展。介绍了调控策略,如改变掺杂和烧结工艺,合金元素和第二相调控。此外,还讨论了这些界面与TZ合金性能之间的关系。最后,结合强韧化机理对TZM 合金的未来研究方向与开发进行了展望。

难熔金属材料增材制造工艺研究进展

摘要:难熔金属材料具有良好的高温力学性能和高温稳定性,常用于制备耐热部件,被广泛应用于航空航天、国防工业等领域。然而,难熔金属的熔点比较高, 室温塑性延展性能不佳,使用传统的加工方式制备复杂结构件时存在加工困难等问题。增材制造作为一项新兴的技术,基于三维模型数据,以激光、电子束、特殊波长光源、电弧及其多种组合作为能量源,利用“离散-堆积”成形原理制造实体部件,制备零件的尺寸可以从微米级到米级,为难熔金属复杂结构件的制备提供了新的途径。本文首先概述了增材制造技术的分类、特点及其应用,然后介绍了增材制造技术制备难熔金属的现状以及目前存在的主要问题,最后综述了增材制造工艺调控难熔金属材料微观组织和力学性能的研究进展,并对增材制造技术在难熔金属领域应用的发展方向进行了展望。

超细钼粉制备技术的研究现状与进展

摘要:金属钼因低的热膨胀系数、高温强度、高弹性模量等特性,广泛用于航空航天、军工、石油化工以及核工业等尖端行业,是推动高科技领域发展不可或缺的材料。钼粉作为钼制品的基础原料,其物化性质与钼制品的性能密切相关。相比于普通钼粉,超细钼粉具有更大的比表面积、更高的活性以及更低的烧结温度。目前制备超细钼粉的方法主要有热还原法和热分解法,热还原法通过调整还原工艺达到阻止晶粒长大的目的;而热分解法的发展主要涉及到装备的升级改造与工艺的优化完善。本文着眼于超细钼粉的制备工艺、反应机理以及产物状态,重点分析了典型工艺的发展历程和技术特点,总结了超细钼粉制备技术的研究现状与进展,提出当前技术工艺所面临的问题以及未来的研究方向,以期为超细钼粉制备工艺的发展与工业化应用提供思路。

Ni-Ti-Cr固溶体对Ti(C,N)基金属陶瓷组织和性能的影响

摘 要:以机械合金化的 Ni-Ti-Cr固溶体作为粘结剂制备了 Ti(C,N)基金属陶瓷,研究了不同 Cr含量的固溶体对金属陶瓷微观组织、力学性能和氧化行为的影响。结果表明,随着 Cr含量的增加,金属陶瓷颗粒尺寸先减小后增大,抗弯强度、断裂韧性和硬度先增大后减小。

镍基高温合金球形粉末制备发展现状

摘要:镍基高温合金球形粉末制备方法主要有等离子旋转电极制粉技术(PREP法)、真空感应熔化气雾化法(VIGA 法)、离子雾化法(PA法)和电极感应气体雾化法(EIGA法)等。本文归纳了镍基高温合金球形粉末的发展现状,分别对球形粉末制备技术、粉末筛分和除杂、粉末相关设备及公司发展现状等进行介绍,分析了镍基高温合金球形粉末面临的问题并展望其前景,以期为制备高品质球形粉末提供参考。

添加氧化镧对钼铼合金组织性能的影响

摘要:采用粉末冶金技术在钼铼合金中添加氧化镧制备了ODS-Mo-14Re,通过EBSD、XRD、维氏硬度计、电子万能试验机对氧化镧添加前后钼合金管材的显微结构、室温与高温力学性能进行了分析。结果表明,适量氧化镧的添加可以对钼铼合金起到很好的细晶强化与弥散强化作用;添加0.3%(质量分数)氧化镧使得钼铼合金的平均晶粒尺寸由22.6μm 降低至7μm;氧化镧作为细小弥散的第二相添加在钼铼合金中,使晶粒内部位错密度增多,位错相互缠结,运动被阻碍,从而使钼铼合金的强度及塑性明显提升,弥散强化效果显著。室温和高温(1300 ℃)拉伸时,Mo-14Re的抗拉强度为725.8、195.3MPa,而ODS-Mo-14Re的抗拉强度达780.9、226.4MPa,分别提升了7.6%和15.9%,表明氧化镧的添加使钼铼合金的室温以及高温力学性能得到明显提高。

硬脆材料的激光辅助磨削加工研究进展

摘要:硬脆材料具有良好的材料力学性能,广泛应用于众多工业领域。但由于其硬度高及脆性大,导致其在磨削加工过程中容易产生脆性断裂等缺陷。激光辅助磨削加工是解决硬脆材料加工中产生缺陷的一种有效加工方法,国内外学者对此开展了大量研究。现从激光辅助加工的作用、激光辅助磨削加工方法方面对国内外的研究现状进行综述,并对硬脆材料激光辅助磨削加工技术未来的发展趋势进行了展望。

稀土永磁材料的氧化和腐蚀防护研究进展

摘要:稀土永磁材料因其特殊的能量转换作用,在航空航天、新能源汽车和风力发电等领域有重要而广泛的应用。然而,由于稀土元素本身比较活泼,稀土永磁材料在高温、潮湿等环境下服役时容易发生氧化和腐蚀,导致其磁性能会急剧下降乃至失效。针对常用的Sm-Co永磁材料和Nd-Fe-B永磁材料,归纳了Sm-Co永磁材料在高温条件下的氧化过程及其模型,总结了Nd-Fe-B永磁材料在高温、湿热环境下发生的氧化、吸氢腐蚀和电化学腐蚀特性,综述了提高磁体自身耐蚀性和涂层防护方面的新进展,并展望了其未来发展的方向。

碳化钼的结构、制备及应用研究进展

摘要:将碳原子引入钼的晶格中形成碳化钼时,形成的间充结构具有独特的物理和化学性质,在加氢反应和制氢反应等领域具有优异的催化性能,可与贵金属铂、钯相媲美。碳化钼化学性质活泼,合成方法和实验条件都密切影响着最终产品的物化性质,任何一种反应原料和实验条件发生微小变化,都可能造成碳化钼的晶相结构、晶粒大小、比表面积等产生较大变化,从而改变材料的催化性质。本文对几种典型碳化钼的晶相类型及空间结构分别进行了介绍,分析了影响碳化钼结构的电子性质和几何因素,系统总结了碳化钼的合成策略并指出了不同制备方法的优劣势。以程序升温还原法为例,分析了碳化钼的生长机理,并从碳化终温、升温速率、碳源浓度三方面着重讨论了制备条件对材料的影响。然后总结了碳化钼在加氢反应、制氢反应、传感器及生物医学材料等领域的应用,详细阐述了碳化钼在电催化析氢和CO2加氢转化反应中的催化机理及改进策略,最后基于目前存在的挑战进一步提出碳化钼材料未来的发展方向。

贵金属Pt掺杂对MgH2/MoS2异质结脱氢性能的影响

摘要: 二维材料中二硫化钼(MoS2)被认为是一种很有前途的高效、低成本析氢反应(HER)催化剂,并且已经被证实能够增强氢化镁(MgH2)的脱氢性能,但是对其深层机理仍然缺少认识。在密度泛函理论(DFT)的基础上,通过第一性原理计算方法在理论上进行研究,构建了MgH2/MoS2的异质结模型,深入探究MoS2对MgH2脱氢性能的影响,并且引入贵金属Pt掺杂进一步改善复合结构的脱氢性能。研究表明,MoS2能够增强MgH2的脱氢热力学性能,MgH2/MoS2 异质结的脱氢性能增强是由于MoS2的引入导致MgH2表面发生大量电荷转移削弱了Mg—H键相互作用以及带隙明显变窄。此外在Pt原子的掺杂使得MgH2/MoS2异质结层间距增大利于H-的迁移,同时进一步的缩小带隙宽度,全面提升了脱氢热力学和动力学性能。