碲化铋基柔性热电器件研究进展

摘要:碲化铋基柔性热电器件具有体积小、质量轻、可变形、可弯折的特点,能够实现高密度阵列集成,契合未来电子信息领域对高性能、微型化、低功耗器件的发展需求。该种器件适用于复杂几何结构和不规则曲率变化的表面,能够满足物联网、可穿戴设备、微电子芯片行业对微能源供应、小空间快速制冷、个人热量管理的需求。综述了近年来碲化铋基柔性热电器件研究进展和存在的问题,并对其未来的发展方向进行了展望。虽然碲化铋基柔性热电器件的研究取得了一定的进展,但整体上仍处于实验室阶段,实现大规模商用应用还有一段距离,今后应侧重于输出功率的提升、穿戴舒适性和美观性、服役稳定性和使用寿命,以及降低制造难度方面的研究。碲化铋基柔性热电器件主要分为块体型、薄膜型和纺织物型3大类型。块体型器件的输出功率一般可达1×10−5W·cm−2,但其柔韧性和穿戴舒适性不足,可通过提高碲化铋基热电材料本身的ZT 值、优化负载电阻、选择热导率低的封装材料,以及合理设计封装元件尺寸和热电臂的形状、数目和连接方式等方法来持续提高其热电性能,可通过开发柔韧性更高、甚至具备自愈能力的封装材料和连接材料来提升其柔韧性和穿戴舒适性。薄膜型器件的输出功率一般在1×10−6—1×10−9 W·cm−2 之间,还达不到实际应用需求,通过提升碲化铋基薄膜制备技术并优化工艺参数来提高薄膜本身热电性能,开发热稳定性、电阻率、导热系数更优的热电界面材料,从而降低接触热阻导致的界面热损失,提高输出功率和转换效率,通过选择柔韧性和机械稳定性更高的基底材料来其使用寿命。纺织物型器件具有较好的拉伸、弯曲和剪切性能,能满足穿戴的舒适性要求,但热电性能较差,输出功率也普遍在1×10−6—1×10−9W·cm−2之间,且稳定性不足,可通过改进涂印和浸渍工艺来提高纱线表面碲化铋基热电材料的均匀性,创新热电纱线组装的结构以在织物厚度方向上更好地建立温差,从而提高其热电性能。本研究为碲化铋基柔性热电器件的应用提供了理论参考。

锆基形状记忆合金的研究进展

摘要: Zr基形状记忆合金具有高的相变温度、大的形状记忆效应和低的磁化率等特点,逐渐受到研究者的关注,同时在航天、航空、能源和医疗等领域展现出良好的应用前景。Zr基形状记忆合金主要包括Zr-Cu基高温形状记忆合金和Zr-Nb 基生物医用形状记忆合金。Zr-Cu基合金相变温度最高可达1000 ℃ ,最大形状记忆效应为6.87%,具有价格较低和易加工成形的优点。Zr-Nb基合金相比奥氏体不锈钢、CoCr合金和钛合金等医用植入材料具有更低的磁化率,有效避免了对核磁共振成像(MRI)影响,可以提高检测准确度。本文对近年来国内外关于Zr-Cu 基和Zr-Nb基形状记忆合金的研究进展进行了综合评述,重点介绍了合金的微观结构、相变机制、形状记忆特性、力学性能、磁化特性和生物相容性,并提出了未来需要重点关注的研究方向。

钨锆合金反应结构材料的研究进展

摘要:钨锆(W-Zr)合金兼具高密度、高强度、高反应潜能等优点,既可以发挥W 基合金优异的侵彻性能,又可以利用Zr的氧化放热提供后效毁伤,在破片式杀爆战斗部、穿甲弹及小口径弹体中展现出巨大的应用潜力,从而备受国内外关注。本文综述了W-Zr合金反应结构材料的制备方法、力学性能以及反应特性,重点讨论了W-Zr合金在侵彻能力及反应释能方面的表现。在此基础上,提出W-Zr合金的未来发展应聚焦于W 的燃烧特性调控以及塑性改善。另外,关于W-Zr合金组织结构、力学性能与动态破碎以及反应释能之间的协同机制仍缺乏系统性研究,后续需要通过实验研究与模拟计算相结合的方式进一步完善。

激光增材制造技术制备高熵合金的研究进展

摘要:目前基于焓变的传统合金化材料设计理念趋于极限,而基于熵变设计的新型金属材料中高熵合金设计自由度大,弥补了亚稳态材料室温脆性以及亚稳晶化的不足,且在性能上不断取得突破。激光增材制造技术具有不同于传统的加工设计和制造理念,为推动先进合金材料的发展提供了新的可能,已经成为链接材料与产品的关键技术。本文基于不同维度的激光增材制造技术,从2D、3D和4D 这3种维度分别介绍了激光熔覆技术制备高熵合金涂层、3D打印技术制备高熵合金和4D打印技术制备高熵高温形状记忆合金的研究现状,并结合目前研究中所面临的关键技术问题及解决方案进行了讨论,最后对激光增材制造技术制备先进合金材料进行了总结和展望。

超粗晶 WC-Co硬质合金制备技术及发展趋势

摘 要:超粗晶硬质合金因其独特的组织特征,表现出良好的抗冲击性、耐磨性、抗热疲劳性等优势,在凿岩、冲压模具、热轧辊领域具有极大的发展潜力,在硬质合金领域备受关注。本文概述了超粗晶硬质合金的特点及增韧机理,介绍了目前粗颗粒 WC原料粉末和超粗晶硬质合金的制备工艺,以及超粗晶硬质合金性能强化方法的探索情况,最后对超粗晶硬质合金的发展趋势提出了几点思考。

镍基高温合金表面冲击强化机制及应用研究进展

摘要:为满足不断攀升的两机涡轮动力系统的快速发展,表面冲击强化技术在涡轮转子用高温合金表面强化的应用及相应机制的研究受到了广泛关注。然而,高温合金表面硬化层在高温服役环境下的回复、再结晶行为难以避免,由此引起的表面强韧化、抗疲劳效果的退化,成为制约表面冲击强化技术在先进高温合金关键部件深入应用的瓶颈。本文总结了近年来镍基高温合金表面冲击强化机制及应用研究进展,分析了表面冲击强化对镍基高温合金表面强韧性及抗疲劳的作用规律,探究了高温合金表面冲击硬化层在高温及长期时效过程中的显微组织、微结构演化及其对高温稳定性的作用机理。以期为发展镍基高温合金表面冲击强化、提高两机涡轮转子疲劳抗力提供基础。

钼基合金的强韧化研究现状及展望

摘要:金属钼因其诸多优异的性能在各个工业领域都有良好应用前景,但钼本身结构特征所导致的本征低温脆性、化学元素掺杂所引起的非本征脆性和制备工艺引起的组织缺陷,限制了其广泛应用和深度加工,合金化是提高钼合金性能的主要方式。本文分析了金属钼的脆性来源,指出非本征脆性及制备工艺的革新是钼合金研究和开发的重点方向; 综述了现阶段钼合金的强韧化形式,总结了高强韧钼合金的发展前景。

形状记忆高熵合金的研究进展与展望

摘要: 高熵形状记忆合金是将高熵概念引入记忆材料领域而发展起来的新型形状记忆合金,此举打破了传统形状记忆合金成分设计的界限,利用高构型熵概念对形状记忆合金的性能进行优化,具有广阔的研究前景。本文简述了高熵形状记忆合金的研究现状,从成分和性能两方面对高熵形状记忆合金进行分类,同时总结了高熵形状记忆合金的制备方法,简要讨论高熵形状记忆合金与传统形状记忆合金相变机理的不同之处,并对其性能和特性进行比较分析,最后基于对现存问题的分析提出研究展望,以期为今后高熵形状记忆合金的开发和应用提供帮助。

难熔高熵合金性能调控与增材制造

摘要:难熔高熵合金(refractory high-entropy alloys,RHEAs)通过添加多种难熔元素形成等原子比或近等原子比的多主元合金,具有简单的相结构和优异的高温性能,在高温合金领域具有极为广阔的应用前景。本文以难熔高熵合金的性能特点与制备工艺为基础,从合金制备与成形面临的挑战出发,综述了难熔高熵合金的性能调控方法与研究进展,介绍了增材制造难熔高熵合金实现的突破与面临的困境,对难熔高熵合金的成分设计及优化、材料制备与加工、增材制造成形进行了展望,并对其未来重点研究方向提出了如下建议:通过调控相结构和相界面克服难熔高熵合金的强韧制约;结合传统强韧化理论与难熔高熵合金自身性能特点进行材料设计;借助增材制造技术的工艺特征促进难熔高熵合金的形性调控;探究难熔高熵合金在高温及多场耦合环境下的使役性能与失效机制。

难熔高熵合金的研究进展及应用

摘要:高熵合金不同于传统工程合金,是由多种元素以等摩尔或近等摩尔的比例混合,形成的以简单固溶体结构为基体的系列成分复杂合金。其中含高熔点元素的难熔高熵合金具有较高的高温强度和优异的高温抗氧化性能及耐蚀性能等突出特点,其潜在的高温应用价值引起了广泛关注。详细阐述了难熔高熵合金的研究现状及应用,根据晶体结构类型将难熔合金体系进行了分类,并对各类体系中的微观组织特征进行了概述;进而归纳总结了难熔高熵合金的各种性能,包括高强度、耐磨性、高温抗氧化性、耐蚀性能等;最后对难熔高熵合金的发展及应用前景进行了展望。