锌铝镁镀层在加热过程中的组织和耐蚀性

摘要:锌铝镁镀层相对于纯锌镀层具有更好的耐蚀性,结合其特有的划伤自愈、切口保护等特点受到越来越多的钢铁生产企业及下游用户的重视,尤其在材料服役条件较为严苛的环境,客户采用该新型镀层的愿望较为强烈。锌铝镁镀层钢板在使用过程中会遇到热加工和热处理,最常见的是焊接和切割。因此研究锌铝镁镀层在不同温度区间的性能稳定性越来越受到关注。为了探究锌铝镁镀层在温度变化过程中组织和性能的变化,更好地提高镀层耐热性能,研究了不同铝含量的锌铝镁镀层(Zn1A11Mg、Zn55A11Mg)在不同的加温温度(300、500、700℃)进行加热,并随炉保温10min之后镀层内部的组织变化以及对物理和化学性能产出的影响。通过相图计算预测了保温之前镀层的析出相,通过电镜表征热处理后镀层的截面组织和表面组织的形貌,对各个不同的区域进行电镜自带的EDS的成分检测;同时,对镀层中不同相的组成进行了XRD的测试;对不同热处理工艺的试样进行维氏硬度的测试;对试样的耐腐蚀性能用电化学的方法来评估。结果表明,在加热到700℃的时候,Zn1A11Mg和Zn55A11Mg镀层的表面组织和截面组织的形貌都出现了很大的变化,对于Zn1Al1Mg镀层组织明显的分为2层,分别为Zn-Fe层和Fe-Zn层;对于Zn55Al1Mg的镀层组织,产生了从基体生长的柱状富铝相,在钢板和镀层的交界处密集生长;表面组织出现了疏松多孔的组织;电化学的结果显示,2种镀层的耐腐蚀性能都有所下降。维氏硬度的检测表明,2种镀层经过热处理后硬度都得到了提高。

CVC工作辊热辊型演变机理及其对板形的影响

摘要:CVC技术是20世纪80年代出现的先进的板形控制技术,该技术通过轧机工作辊轴向横移获得所需辊缝凸度,从而控制出口带钢板形。热轧过程中CVC工作辊的热辊型变化对辊缝凸度影响显著,精确预报工作辊的热辊型对提高带钢板形控制精度和减小轧辊磨损有着重要的意义。以某厂1780mm带钢热连轧生产线为研究对象,运用大型有限元分析软件ANSYS/LS-DYNA分别建立第4机架的工作辊三维热凸度有限元仿真模型和三维有限元轧制仿真模型。分析不同轧制时间、轧制速度、轧制间隙时间等轧制工艺对热辊型的影响。将不同轧制工艺下得到的热辊型代人到轧制仿真模型中,分析不同轧制工艺下的热辊型对带钢板形的影响。轧制初期工作辊热辊型发生明显变化,工作辊热凸度增加,带钢凸度降低,4000s后工作辊热辊型达到稳定状态,带钢凸度不再变化;轧制速度对热辊型影响较小,在热凸度稳定后对板形影响较小;工作辊随着轧制间歇时间的增加,冷却时间增加,热膨胀量减小,导致带钢凸度增加;随着带钢宽度的增大,工作辊边部吸收热量增加,工作辊热辊型边部发生明显变化,带钢凸度增大。仿真结果表明,轧制时间、轧制间隙时间、带钢宽度对板形影响较大,轧制速度影响较小,研究成果能为现场轧辊原始辊型曲线设计和板形控制提供参考。

氢冶金炼钢技术的研究现状与展望

摘要:提出了“氢气炼钢”代替“氧气炼钢”的观点,对“氢气炼钢”的研究现状进行了总结和评价。氢冶金炼钢在节能降耗和改善产品质量方面具有独特优势。一方面“氢”具有高效熔炼作用,能够有效降低炼钢能耗。等离子体态的“氢”具有高温、高热导率的优势,可作为高效热源实现炉料熔化与钢液加热,在电弧炉、转炉以及中间包等炼钢设备中得到初步应用。喷吹气态“氢”能够加速成分和温度均匀,且氢气泡运动能粘附和加快其他非金属夹杂物上浮;同时与钢液中的氧等反应释放大量热量,改善了熔池反应的热力学与动力学条件。此外,“氢”通过营造还原性气氛,抑制氧化,降低Cr、Mn等合金元素的损耗。另一方面,“氢”具有无污染精炼的作用,能够显著提高钢液洁净度。基于“氢”的高活性和高还原性,“氢”能够有效去除钢中O、C、N、S和P等杂质元素,尤其是等离子态“氢”,可直接与杂质元素反应生成H,O、CH4、NH、H,S和PH,等极易挥发去除的气体产物,避免非金属夹杂物形成,实现“零夹杂物”的高效高洁净度炼钢。因而,发展以“氢”代“碳”的氢冶金新一代绿色近零碳“零夹杂物”无污染钢铁冶金流程,将加速钢铁工业绿色高质量可持续发展,助力中国实施“双碳”与“制造强国战略。

电渣冶金渣系挥发特性研究进展

摘要:电渣重熔是一种利用电流通过熔渣时产生的电阻热作为热源进行熔炼的净化钢液手段。因为其冶炼产品具有金属洁净、组织致密、成分均匀、表面光洁等优点,广泛应用于高端金属材料制备。为了保证熔渣的导电性,电渣渣系均含有一定CaF2,冶炼过程挥发严重,污染环境;氟化物挥发造成渣系成分波动大进而影响冶炼过程和产品质量。从渣系组成、冶炼环境、热力学和动力学几方面出发,讨论了影响渣系中氟化物挥发的因素,探讨了降低氟化物挥发的有效方法。重点介绍了CaF2、w((CaO))/w((SiO2))、w((CaO))/w((Al2O3))对渣系挥发的影响。降低渣中CaF2含量、增大w((CaO))/w((SiO2))、减小w((CaO))/w((Al2O3))可有效减少渣中氟化物挥发;讨论了利用碱金属氧化物(Li2O、Na2O、K2O)、TiO2、B2O3代替CaF2开发低氟渣的可能性。利用Na2O、TiO2、B2O3等代替CaF2是未来低氟/无氟渣开发的重要方向之一;综述了冶炼温度和环境湿度等对含氟渣系挥发的影响规律。降低冶炼温度、提高升温速率、对渣系预熔和保持干燥均可有效抑制氟化物挥发;基于电渣冶金渣系挥发热力学和动力学研究现状,介绍了炉渣分子离子共存理论计算渣系组元活度的适用性,总结了渣系挥发的动力学机理,归纳了电渣重熔过程中含氟渣挥发的限制性环节。分子离子模型对常见渣系组元活度计算具有很高的准确性,对其他特殊渣系的适用性还有待进一步验证。未来渣系挥发动力学研究应重点关注参与挥发反应的阴阳离子由本体向反应界面传质过程,以及反应生成物的形核、长大、气泡化的过程这2个限制性环节,以减少氟化物挥发。

冷拔与时效对10.9级紧固件非调质钢的影响

摘要:非调质钢具有性能优良、节能、制造成本低、生产周期短,并有利于环境保护等突出优点,因此非调质钢被誉为“绿色钢材”。铁素体-珠光体型非调质钢是使用量最大、应用范围最广的非调质钢,但随着紧固件用钢对强塑性和安全系数要求的日益提高,目前缺乏对10.9级紧固件用非调质钢强塑性的系统研究。采用SEM、EBSD、XRD、TEM、硬度和拉伸测试等手段,研究了变形量和时效处理对一种低碳Nb-V系铁素体-珠光体型冷作强化非调质钢(MFT9)组织结构和力学性能的影响。结果表明,相较于热轧态,随着减面率增大,经拉拔后的钢屈服强度升高了245~400MPa,抗拉强度升高了125~280MPa,硬度升高了24HV~67HV,屈强比先增大后下降,由0.71增加到0.94后下降到0.91塑性有所降低。经50%减面率冷变形后,位错密度增加,由5.104X1014cm-2升高到1.140×101°cm-²,而经时效处理后位错密度相较于冷拔态无明显变化。热轧态下晶粒取向主要为

钢铁表面制备金刚石薄膜研究进展

摘要:在钢铁表面沉积金刚石薄膜可以提高其耐腐蚀性、生物相容性、硬度、耐磨性,延长使用寿命,由涂覆有金刚石薄膜的钢铁制成的产品在机械和医疗器械行业中存在广阔的应用前景。然而,在钢铁表面直接沉积金刚石薄膜存在铁(或钴、镍)催石墨化、应力大和易脱落的问题。针对这些问题,人们进行了30多年的探索与研究,在工艺和过渡层方面积累了很多经验。文章综述了直接在钢铁表面沉积金刚石薄膜和以过渡层在钢铁表面沉积金刚石薄膜的研究现状,并对未来的研究方向做了展望。

金属快速剪切连接工艺及成形力研究

摘要:剪切连接是无头轧制技术中的重要工艺,变形过程中存在剪切、挤压和镦粗。为掌握成形载荷的变化规律,基于上限法-基元矩形技术和多元回归分析建立了压下量为1倍板料厚度时的成形载荷预测模型,可进行任意刃口宽度和搭接量组合参数下的理论成形载荷求解。对剪切连接进行了工艺实验,分别得到了工艺参数对侧凸率、去头端厚度百分比和载荷值影响的主次顺序,及相对于各判定指标的最优方案。通过建立综合评价指标并进行极差分析得到了最优参数组合。将实验载荷与所建立的预测模型理论载荷进行了对比,两者数据相近,最大相对误差小于8%。该研究为中间坏高温固态剪切连接奠定了理论基础,对生产实践具有一定的指导作用。

在AI大航海时代来临之际 探索冶金行业的“AI新大陆”

摘要:自2020年全球多国提出“碳中和”目标以来,人工智能(AI)领域也在近两年取得了突飞猛进的发展,尤其是以ChatGPT、DeepSeek等为代表的大模型技术的突破,标志着我们正迎来一个崭新的时代。这是一个充满挑战和危机的时代,也是一个伟大的时代。

氢冶金场景下规模化固态氢储运技术的开发及应用

摘要:钢铁行业的氢冶金是未来氢能规模化应用的主要场景之一,炼铁炉利用氢气作为还原剂,替代传统的碳基还原过程,从而减少温室气体排放。在氢冶金过程中,建立高效可靠的氢储运产业链是成败的关键。简述了氢冶金背景和国内外氢气储存领域的研究进展和应用现状,对各种储存技术进行了简明分析。结合氢冶金工厂的特点,提出“气固相分离式固态氢储运技术”的方案,理论上可实现经济、安全、长距离、面向工业应用的大规模氢储运。未来可通过工程化手段实现大宗含氢物料的制备和存储运输,并与冶金或化工工厂的原料工艺流程实现有效衔接,对上游合金资源产业和可再生能源制氢产业也有重要推动作用。

固溶处理对新型全奥氏体高锰低温钢微观组织、力学性能及摩擦性能的影响

摘要: 针对新型奥氏体高锰低温钢在LNG (Liquefied natural gas)储罐应用中的磨损问题,本文中研究了不同固溶处理温度对微观组织、力学性能和耐磨性能影响以及三者之间的关联性. 将25Mn高锰钢分别在950、1000、1050以及1100℃下固溶处理0.5h,并采用光学显微镜、白光干涉仪、扫描电子显微镜及能谱仪对试样的微观组织、磨损轮廓和磨痕形貌进行了表征. 结果表明:随着固溶处理温度的升高,高锰钢的表面硬度逐渐下降,1100℃固溶处理后钢材硬度降到最低,约为261 HV. 另外,钢材的抗拉强度随固溶温度升高先增大后减小,其中在1000℃下展现出最优的抗拉强度、屈服强度及应变硬化速率. 在摩擦性能测试结果中可以看出,高锰钢表面平均摩擦系数随着固溶处理温度先增大后减小再增大,在1000℃时因发生氧化摩擦而降到最低,约为0.39,磨损率为0.49‰,表现了最优的耐磨性能. 这主要是由于1000℃热处理后的高锰钢磨痕表面密布颗粒均匀的碳化物,导致磨损后的硬度增大近50.6%,磨损机理从颗粒磨损与疲劳磨损结合转变为黏着磨损为主,颗粒磨损为辅.