柔性导电高分子复合材料在应变传感器中的应用

摘要:柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器) 和传感机理( 隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构( 微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构) 。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。

II~VI族半导体纳米晶体的手性研究前沿

摘要:近年来, 手性II~VI族半导体纳米晶体因其独特的光电性能和手性诱导电子自旋选择性特点而受到广泛关注. 手性是一种对称性破缺现象, 可通过以下几种方式诱导纳米晶体的手性: (1) 连接手性配体; (2) 形成手性晶格; (3) 形成手性形貌; (4) 手性组装排列; (5) 多级手性及手性放大. 在手性诱导过程中, 由于更小尺寸的纳米晶体——量子点的量子限域效应, 其物理化学性质可随尺寸、形貌、组成和晶型进行调控, 可以使其在紫外-可见-近红外光区域内表现出手性消光和圆偏振发光等特性. 此外, 几何参数如形状各向异性、晶格失配和表面不对称性在调节手性纳米结构的手性响应中也扮演着关键角色. 因此, II~VI族手性半导体纳米材料在纳米光子学应用中的根本挑战是对纳米尺度的立体合成的完全控制, 并从实验和理论两方面阐明不同维度手性的发生机制. 本综述介绍了过去十几年来手性半导体纳米晶体, 从控制合成到手性起源探索和潜在应用方面的最新研究进展, 并提出了新的材料合成策略和理论改进论点, 为新兴的跨学科领域如圆偏振发光、自旋电子学和基于手性的医疗诊断纳米器件应用等提供新思路.

全固态离子选择性电极在可穿戴电化学传感器中的进展

摘要:人体汗液富含丰富的与身体健康状况相关的电解质, 采用可穿戴电化学离子传感器对汗液实时监测可为身体健康提供合理的指导。基于全固态离子选择性电极的可穿戴电化学传感器因能够实时无创地分析生物体液离子受到越来越多的关注。开发新的固接层材料, 探索新的电位响应机理及在可穿戴设备上的应用促进了全固态离子选择性电极的发展。本文综述了全固态离子选择性电极的研究进展, 包括传统的电位响应机理(氧化还原电容和双电层电容原理)和新型固接层材料(导电聚合物、碳和其他纳米材料)以及在可穿戴柔性传感器方面的应用。 最后对全固态离子选择性电极存在的挑战和未来的前景做出了展望。

高性能功率器件封装及其功率循环可靠性研究进展

摘要: 半导体技术的进步使得功率器件面临更高的电压、功率密度和结温,这对功率器件的封装的可靠性提出了更高的要求。如何提高和检测功率器件的可靠性已经成为功率器件发展的重要任务。提升器件封装可靠性主要围绕优化封装结构、改进芯片贴装技术和引线键合技术3个方向研究。功率循环作为最贴近功率器件实际工况的可靠性测试方法,其测试技术、参数监测方法和失效机理得到广泛的研究。对功率器件封装结构、封装技术以及功率循环机理的相关研究进行了综述,总结了近年国内外的提升封装可靠性的方法,并介绍功率循环测试的原理和钎料层、键合线的失效机理,最后对于功率器件封装的未来发展趋势进行了展望。创新点: (1) 从封装结构、芯片贴装和引线键合3 方面讨论了提升功率器件封装可靠性。(2) 总结了功率循环的控制参数、策略、检测参数和失效判据方面的研究。

基于有机场效应晶体管的柔性传感器: 材料、机制与应用

摘要:有机场效应晶体管是一种优良的传感器载体, 具有丰富的传感机制和独特的电信号放大特性. 有机半导体具有质量轻便、机械柔性、可溶液加工、分子结构可调等优点, 适于制备低成本、大面积、多功能的柔性传感活性层. 基于有机场效应晶体管的各类柔性传感器已经广泛应用于智能穿戴、电子皮肤、生物检测、环境保护等领域. 本文总结了近年来柔性有机场效应晶体管传感器的研究进展, 从材料、机制和应用三个层面出发, 介绍有机半导体传感材料的设计原则、有机场效应晶体管的传感机制及其在化学、物理、生物领域的应用. 最后,总结了有机场效应晶体管传感器的研究现状和现存问题, 展望了有机场效应晶体管柔性传感器的未来发展方向.

超精密晶圆减薄砂轮及减薄磨削装备研究进展

摘要:在芯片制程的后道阶段,通过超精密晶圆减薄工艺可以有效减小芯片封装体积,导通电阻,改善芯片的热扩散效率,提高其电气性能、力学性能。目前的主流工艺通过超细粒度金刚石砂轮和高稳定性超精密减薄设备对晶圆进行减薄,可实现大尺寸晶圆的高精度、高效率、高稳定性无损伤表面加工。重点综述了目前超精密晶圆减薄砂轮的研究进展,在磨料方面综述了机械磨削用硬磨料和化学机械磨削用软磨料的研究现状,包括泡沫化金刚石、金刚石团聚磨料、表面微刃金刚石的制备方法及磨削性能,同时归纳总结了软磨料砂轮的化学机械磨削机理及材料去除模型。在结合剂研究方面,综述了金属、树脂和陶瓷3 种结合剂的优缺点,以及在晶圆减薄砂轮上的应用,重点综述了目前在改善陶瓷结合剂的本征力学强度及与金刚石之间的界面润湿性方面的研究进展。在晶圆减薄超细粒度金刚石砂轮制备方面,由于微纳金刚石的表面能较大,采用传统工艺制备砂轮会导致磨料发生团聚,影响加工质量。在此基础上,总结论述了溶胶-凝胶法、高分子网络凝胶法、电泳沉积法、凝胶注模法、结构化砂轮等新型工艺方法在超细粒度砂轮制备方面的应用研究,同时还综述了目前不同的晶圆减薄工艺及超精密减薄设备的研究进展,并指出未来半导体加工工具及装备的发展方向。

高端电子制造中电镀铜添加剂作用机制研究进展

摘要:铜互连电镀是芯片等高端电子器件制造的核心技术之一, 明晰相关镀铜添加剂的作用机制将促进先进铜互连技术的发展。本文针对硫酸镀铜体系, 侧重从方法学角度总结了加速剂、抑制剂、整平剂三类添加剂的界面吸附结构以及在电镀填铜过程中的微观作用机制, 分析讨论了不同研究方法的特点与局限性, 并归纳了芯片互连电镀过程中存在的科学问题, 为先进制程芯片电镀添加剂的研发提供参考。

高压电缆半导电屏蔽料研究进展及关键技术分析

摘要:作为高压电缆重要组成部分,半导电屏蔽层对高压电缆的运行稳定性和使用寿命具有至关重要作用。然而,我国高压电缆半导电屏蔽严重依赖进口,极大程度限制了我国高压电缆自主化生产。基于此,本文介绍了高压电缆半导电屏蔽料国内外发展现状,分析了高压电缆半导电屏蔽料材料组分( 基体树脂、导电炭黑和加工助剂) 的作用及关键评价指标,重点讨论了高压电缆半导电屏蔽料生产制造存在的技术瓶颈: 导电炭黑分散性、电阻率及其稳定性和表面光洁度。最后,对高压电缆半导电屏蔽料的发展方向进行了展望。本文全面系统地综述了高压电缆半导电屏蔽料的研究进展,有望为高压电缆半导电屏蔽料国产化设计与开发提供理论指导。

静电纺柔性超级电容器电极材料的研究进展

摘要:柔性超级电容器具有充放电速度快、功率密度高和能量密度高等优点,已成为智能可穿戴设备的理想供能器件。其中,优异的电化学性能和良好的柔韧性是供能器件追求的关键性能指标,而电极材料是其中的核心部分。电极材料的制备方法有沉积法、纺丝法、喷涂法、涂覆法和3D打印等,其中,纺丝法中的静电纺丝技术工艺简单、纤维形貌可控性强,且制备的纤维比表面积大、孔隙率高、柔性好,经过碳化处理后,不需要粘结剂就可直接作为超级电容器的电极材料。本文综述了近年来常规和新型静电纺柔性电极材料在超级电容器领域应用的最新研究进展,并对其进行了分类,对比了不同种类电极材料的制备方法和后处理工艺。据文献资料报道,基于静电纺纳米纤维膜碳化处理后的电极材料具有大的比表面积和含碳率,通过后处理优化材料的孔结构或者在表面负载金属氧化物,都可以很好地提升其电化学性能,实现其使用效能。除了前驱体原料外,纳米纤维的形貌、预氧化和碳化温度、升温速率,以及通过活化等后处理形成的孔结构等因素都会对电极材料的柔性产生极大影响。本文通过对电极材料的分类、对新材料的介绍,为研究人员开发和使用新材料提供一个方向。此外,本文对提升电极材料电化学性能的诸多方法以及电极材料产生柔性的原因进行了总结,可以为研究人员开发新型高效的柔性超级电容器提供帮助。

液晶高分子聚合物的类型、加工、应用综述

摘要:液晶高分子(LCP),简单可分为溶致LCP、热致LCP,其在一定条件下以液晶相存在,有独特的分子取向,兼容高分子、液晶特性。LCP具有高耐热、高模量、低熔融粘度、极小的热膨胀系数、低介电损耗、高机械强度等优异的力学性能、介电性能、光学性能,可广泛应用于高频高速电子通讯、生物医用、复合材料等领域。与聚乙烯、聚丙烯等通用塑性聚合物相比,LCP成型工艺还不够完善,尚有许多问题亟需解决,如填料填充、加工温度、相容性等因素如何影响挤出成型产品性能,理论模型、循环加工次数、相容性等如何影响注塑成型产品性能,拉伸比、加热参数等如何影响纤维产品力学性能。此外,LCP在具体领域应用也存在较多问题,如印制电路板(PCB)加工、表面处理等如何对通信领域的信号产生影响,加工条件、自增强纤维化能力等如何对复合材料性能产生影响,以及生物医学、光学、记忆材料、导热等领域应用的可行性如何等。大量研究结果表明,LCP含量、剪切速率、加工温度、无机填料含量等因素对LCP挤出制品的模量、电阻率、相容性等有影响,增强材料类型、熔融粘度、LCP含量等因素能明显提高LCP复合材料的力学性能。通信领域,LCP在30~110GHz的介电损耗角正切(Df)小于0.0048,进一步优化LCP的PCB加工参数、表面处理,制备的天线具有宽带宽、高效连接等优异性能;生物医用领域,LCP可作为抗原检测、传感器、神经网络的有效组件;复合材料领域,引入LCP、调节加工参数,可使复合材料的力学性能大幅提升。此外,LCP在记忆、光学、导热方面也有较多应用探索。本文对LCP分类进行了介绍,对LCP的挤出工艺、注塑工艺、纺丝工艺进行了说明,对LCP在通讯、生物医用、复合材料等领域进行了综述,并展望了该材料的发展前景。