荧光导航冷冻聚焦离子束减薄技术的研究进展

摘要:细胞超微结构的原位解析是当前的一个研究热点。冷冻电子断层扫描成像技术(cryo-ET)是目前细胞原位结构解析的核心技术。cryo-ET 只能对厚度小于300 nm 的样品进行成像,因此利用cryo-ET 研究细胞超微结构时首先需要对细胞进行减薄。聚焦离子束(FIB)切割是目前冷冻生物样品减薄的主流技术。传统FIB 切割只能在细胞的任意位置上进行“盲切”,无法对细胞内部特定研究目标进行定点切割。光电融合成像技术(CLEM)恰可解决这一问题。CLEM 利用荧光成像技术识别并定位研究目标,通过光电图像的关联匹配,可在FIB 图像中确定荧光目标的位置,进而指导FIB 的定点减薄。针对荧光导航cryo-FIB 减薄的相关技术方法、仪器设备和工作流程进行了梳理,分析对比了主流方案的优缺点,旨在帮助研究者选择出合适的荧光导航FIB 减薄方案,并对该技术的未来发展方向进行了展望。

细胞间通信预测方法研究进展

摘要 基于配体−受体(L-R) 互作的细胞间通信是细胞相互协同完成复杂生命活动的重要方式。随着单细胞测序技术的快速发展,在单细胞水平上系统地解析细胞间通信网络及功能迅速成为细胞生物学研究的热点。该文简要阐述了细胞间通信的基本生物学过程;并系统比较了目前较具代表性的细胞间通信预测相关数据库、算法以及评测分析研究;最后系统总结了细胞间通信预测方法的发展趋势,并展望了其未来的研究方向。关键词 数据库; 细胞间通信; 配体; 受体; 单细胞测序; 空间转录组

瞬态超高温MEMS石墨烯温度传感器设计

摘 要: 针对炮膛、航空发动机等设备对于超高温瞬态温度测量的需要, 设计了一种量程达3000 ℃ 的瞬态石墨烯温度传感器, 传感器由石墨烯敏感芯片、管帽、管壳三部分组成, 利用管帽传热的同时进行热阻隔。本论文设计的石墨烯MEMS 温度传感器具有量程宽、针对性强、稳定性高等特点, 可为石墨烯传感器应用于超高温瞬态测量领域提供可行性方案。关键词: 瞬态超高温; 石墨烯; 热阻效应; 外推法; 温度传感器

超级铝热剂在固体推进剂中的应用研究进展

摘要:超级铝热剂具有高放热和高活性的特点,其反应速率和能量释放效率均显著高于传统铝热剂,应用于固体推进剂有望改善释能速率、效率、感度等指标,已成为固体推进剂的发展方向。总结了超级铝热剂的制备工艺、特点及其工业化应用潜力;论述了超级铝热剂在固体推进剂中的适用性;综述了超级铝热剂的微结构( 燃料/ 氧化剂界面控制、核壳结构、多层膜结构)和组分(金属氧化物、氟材料、碳纳米材料)对固体推进剂燃烧性能和能量释放的影响。超级铝热剂的添加显著提高了热反应活性和放热量,增强了推进剂的点火及燃烧性能,同时存在工业生产成本高、工艺控制要求复杂、燃烧过程精密控制难度大等问题,展望了未来超级铝热剂在固体推进剂中应用的研究重点和发展方向。

用于Li-CO2电池的过渡金属及其合金催化剂研究进展

摘要:【目的】提升锂-二氧化碳(Li-CO2)电池的反应可逆性和动力学特性,概括Li-CO2电池的简史、结构、工作原理以及关键科学问题,综述用于Li-CO2电池的过渡金属及其合金催化剂的成分、形貌、微观结构等特性及其对Li-CO2电池性能的影响,分析过渡金属及其合金催化剂在催化过程中的作用机制和演化行为。【研究现状】过渡金属对反应物吸附与活化、 放电产物沉积及分解具有促进作用。基于过渡金属元素构筑的单金属和双金属正极催化剂,在Li-CO2电池中的催化活性、作用机制及其自身在催化过程中的演化各不相同。金属间化合物具有显著区别于固溶合金、单分散双金属、单一金属的化学微环境,因此在促进反应物种吸附与活化、产物分解等方面表现出独特优势。【结论与展望】过渡金属及其合金催化剂的未来研究方向有:调控催化剂宏观形貌和表面微结构;监测催化过程中催化剂结构与成分演化、放电产物沉积与分解行为;建立适用于Li-CO2电池的催化剂关键“描述符”;开发低成本催化剂量产工艺。

柔性锌离子电池在可穿戴传感器中的应用研究进展

摘要:可穿戴传感器在运动、医学、康复等多个领域的应用极大地方便了对人体运动指标信号的捕捉和监测,有效避免了运动损伤,降低了就医频率甚至挽救了许多生命。随着可穿戴传感器的应用和普及,与之适配的柔性能源供应系统成为其发展的关键。近年来研究者们基于不同的能量释放方式,研究和设计了多种柔性能源供应系统,其中柔性锌离子电池以其高能量密度、高弹性模量、高循环稳定性和高安全性在众多供能体系中脱颖而出,成为可穿戴传感器最具潜力的柔性能源供应系统之一。本文综述了柔性锌离子电池近年来在可穿戴传感器方面的研究进展,主要介绍和总结了电池各组件(集流体、电极(正极、负极)、隔膜、电解质、封装)的材料类型、特点以及与可穿戴传感器集成的应用情况,最后讨论了柔性锌离子电池目前面临的问题和挑战。

与硅基技术兼容的二维过渡金属硫族化合物电子器件

摘要:作为现代信息社会的物理基石, 以硅基材料为核心的集成电路极大推动了人类现代文明的进程. 但是, 随着晶体管特征尺寸微缩逐渐接近物理极限, 传统硅基材料出现了电学性能衰退、异质界面失稳等挑战, 导致集成电路数据处理能力提升难、功耗急剧增加等问题产生. 超薄二维过渡金属硫族化合物(transition metal dichalcogenides,TMDCs)具有表面平整无悬挂键、电输运性能优异、静电控制力强、化学性质稳定等优势, 可有效解决上述问题, 被认为是后摩尔时代集成电路的最具潜力候选材料之一. 目前, 二维TMDCs集成电路研究在多个关键领域均取得了突破性成果, 但距离产业化应用仍需要克服一些挑战. 本文着重介绍了二维TMDCs材料与电子器件在集成电路应用的各方面优势, 系统阐明了二维TMDCs集成电路在材料控制生长、范德华界面优化以及器件设计构筑等方面的关键科学问题, 提出了相应解决办法和应对措施, 分析了二维TMDCs集成电路产业化进程中的综合性挑战, 明确了“与硅基技术兼容”二维TMDCs集成电路发展路线的优势、可行性与突破方向.

面向集成电路先进制程的二维信息材料与器件

摘要:随着集成电路技术的发展至3 nm 节点,摩尔定律接近其物理极限,传统芯片制程面临材料到器件的理论和技术瓶颈。二维信息材料凭借原子层厚度、低功耗等特性被产业界认为是1nm 及以下节点的核心材料,将助力芯片制程延续摩尔定律以及平面到三维的发展,与我国集成电路先进制程长期规划紧密相关。基于国家自然科学基金委员会第343期双清论坛,本文从材料—器件—异质集成多层次回顾了二维信息材料与器件的发展历史,总结了领域内所面临挑战,凝炼了未来5~10年的重大关键科学以及亟需布局的研究方向,进一步提出顶层设计的前沿研究方向和科学基金资助战略。

基于金属衬底的石墨烯温度传感器仿真

摘要:针对动力设备实时温度测量的需求,研究了一种快响应、宽温区的石墨烯温度传感器。传感器芯片由金属衬底、绝缘层、金属电极层、石墨烯传感层、保护层和金属抗氧化涂层组成。以热导率高的金属为衬底,另外在传统的陶瓷保护层的基础上增加四元金属抗氧化涂层,能够有效阻挡高温下氧气的渗透。利用有限元软件进行分析,当温度由室温升高到1 200 ℃时,采用硬质合金、氧化铝、氮化硅为衬底的芯片响应时间分别为55、660、75 ms,衬底热导率越高,响应速度越快。传感器芯片各层厚度的变化对热应力的影响极大,当金属衬底厚1 000 μm、绝缘层厚0.1 μm、保护层厚0.5 μm、氮化钛打底层厚0.04 μm、氮铝化钛过渡层厚0.3 μm、钛铝硅氮功能层厚0.7 μm、氮化钛硅着色层厚0.5 μm 时,最大热应力较小,为24 966 MPa。该研究为拓展石墨烯温度传感器的耐温范围提供新的思路,为石墨烯传感器应用于高温瞬态测量提供可行性方案。

基于纳米孔结构的超高压石墨烯压力传感器设计

摘 要: 设计了一种基于纳米孔结构的超高压石墨烯压力传感器。由于氮化硼的六方晶体结构与石墨烯的晶体结构高度相似, 该传感器采用氮化硼/ 石墨烯/ 氮化硼的石墨烯复合异质敏感薄膜作为压力传感器的敏感材料, 利用石墨烯薄膜材料的压阻效应对压力进行检测。可为超高压石墨烯压力传感的结构设计和性能优化提供一定参考。关键词: 石墨烯; 纳米孔; 超高压; 理论模型; 有限元仿真