汽车EVI技术进展

摘要:阐述了EVI的概念、目的及意义,综述了热成形钢、淬火分配(Quenching and Partitioning,QP)钢及DH 钢冷成形钢、和新能源汽车专用的高强度钢硅钢新材料方面的进展,以及可实现高精度碰撞模拟的材料断裂卡片和实现剪切边缘冲压模拟的材料成形卡片的开发进展,论述了在新材料开发和精准成形及碰撞模拟的基础上的乘用车车身正向选材,实现EVI的核心目标之一“合适的材料用在合适的地方”。探讨了热成形门环、一体化铝合金下车体、商用车热成形上装及车轮最新制造工艺技术。分析了“双碳”和“抗氢脆”两个共性需求,并提出了低碳排放汽车钢及铝合金零件的实施路径,以及抗氢脆热成形钢和冷成形钢的实现路径。对原材料企业和零部件企业当前和未来基于EVI技术和服务方向提出了建议。

柔性传感器在智能网联汽车上的应用与发展

摘要: 通过将柔性传感器集成于汽车座椅、转向盘及动力系统零部件,可实时监测驾乘人员生理指标(心率、呼吸)与车辆健康状态。系统综述了柔性传感器在智能汽车中的环境感知(如车内气体监测)、人机交互(如触控反馈、智能座舱感知)两大应用场景,重点解析了柔性压力传感器三大核心技术路线:基于压阻式原理的纳米复合材料传感器、基于电容式原理的多孔型离子凝胶传感器和基于压电式原理的高分子聚合物传感器,深入研究了各技术路线的信号转换机制,为构建智能汽车多模态感知网络提供了理论支持。

车规级芯片封装界面可靠性研究进展

摘要: 控制芯片作为汽车电子控制单元(ECUs)的核心部件,其封装可靠性直接影响整车安全性能。针对微控制单元(MCU)与系统级芯片(SoC)两类主流架构,基于汽车典型工况下的机械振动与温度冲击复合载荷特征,系统研究了封装界面分层失效机制。研究表明:在多载荷耦合作用下,贴片界面、引线键合界面及底部填充胶界面等关键部位的性能退化导致的界面粘接强度衰减与材料热失配效应是诱发分层失效的主导因素。通过对比虚拟裂纹闭合技术(VCCT)、J积分法及内聚力模型(CZM)的数值模拟适用性,表明CZM 在非线性材料大变形条件下具有界面失效表征优势,J积分则适用于非线性材料小变形断裂领域,而VCCT在线弹性稳态裂纹扩展分析中更具计算效率优势。

柔性电子技术在汽车上的应用与展望

摘要: 随着新能源汽车产业的发展,传统电子技术已无法满足节能性、智能性、安全性和舒适性的需求,而柔性电子技术以其轻薄、柔软、低成本等优势展现出巨大潜力。综述了柔性电子技术在汽车领域的应用及其研究现状,从柔性显示技术、柔性传感技术、柔性电池技术和柔性光电材料技术4 个方面进行了探讨,并展望了其在汽车载具领域的应用前景。

车用SiC-MOSFET的应用与技术发展综述

摘要:针对硅基绝缘栅双极型晶体管(IGBT)难以进一步满足电动汽车高功率密度、低导通损耗、高散热能力等需求的不足,综述了车用碳化硅金属氧化物半导体场效应晶体管(SiC-MOSFET)的最新研究进展。通过总结SiCMOSFET在电动汽车牵引逆变器、DC/DC电源变换器和车载充电机(OBC)应用场景下的特点,分析了目前车用SiCMOSFET在成本、可靠性及散热方面的技术挑战,并探讨了其在微型化、先进封装、多芯片集成和成本方面的发展趋势。

典型转子发动机散热翅片结构优化设计及仿真研究

摘要:在工作过程中,转子发动机的缸体内部温度高、分布不均匀,易引起热应力、热疲劳等问题,影响发动机使用寿命。为了提高转子发动机工作时的安全性,延长其使用寿命,针对高温区温度过高的主要问题,基于转子发动机换热理论提出了加长翅片、栅格结构、铜铝一体化3 种优化方法。在验证仿真正确性的前提下,使用Fluent 模拟了不同模型的换热过程。仿真结果表明,所提3种方案均能提高转子发动机散热性能,相比于未优化模型,加长翅片模型的表面积提高124.4%,散热效果提升4.9%,栅格模型的表面积提高158.5%,散热效果提升8.3%,铜铝一体化模型在结构和材料的协同作用下,散热能力提升15.2%。试验表明,合理优化翅片结构及材料能够提高转子发动机的散热效果。

新能源汽车齿轮高效精密加工技术与装备研究进展

摘要:齿轮是新能源汽车电驱动传动系统的核心基础件,对整车性能具有重要的影响。随着新能源汽车渗透率和电驱动传动系统功率密度的快速提升,齿轮面临高转速、低噪声、抗疲劳等高服役性能挑战,实现其高效精密加工是保障高服役性能的根本途径。但目前新能源汽车齿轮高效精密加工在创成机理、关键技术、加工装备等方面还存在一些难点。为此,在概述新能源汽车齿轮高效精密加工需求的基础上,围绕蜗杆砂轮磨齿工艺、内啮合强力珩齿工艺等典型工艺的高性能齿面创成机理、高效精密加工关键技术、齿轮高效精密加工典型装备的国内外研究现状进行了系统的论述与总结,并对新能源汽车齿轮高效精密加工技术的发展趋势进行了总结和展望,为后续研究提供理论和技术指导。

商用车电驱动桥壳多工况疲劳寿命预测及优化

摘要:驱动桥壳在实际行驶过程中由于长期受到交变循环载荷的作用,发生疲劳破坏的可能性较大。为了判断某商用车轮边电机电驱动桥的驱动桥壳在设计时是否满足疲劳寿命的要求,建立了驱动桥的三维模型和有限元模型。首先,对其进行惯性释放分析,得出其静强度、刚度满足要求。其次,基于nCode DesignLife软件,使用名义应力法,结合材料的S⁃N 曲线和疲劳加载曲线,采用新的汽车行业标准对其在垂直弯曲疲劳、制动疲劳和横向疲劳多工况下的疲劳寿命进行了预测。结果发现,驱动桥壳在制动疲劳和横向疲劳工况下的疲劳寿命不满足标准中的要求,须对其进行结构优化。最后,对驱动桥壳进行了加筋优化处理。结果表明,优化后的驱动桥壳在最大冲击工况下最大应力减小了95.8 MPa,最大变形减小了1.064 mm,且在3种疲劳工况下的最低疲劳寿命分别提升了107.6、28. 9、49.7万次,均超出了标准中的要求,证明了驱动桥壳结构优化的可行性,有效缩短了研发周期,并降低了研发成本。

汽车电子电气架构的发展及趋势

摘要:随着汽车功能的日益增加,传统的电子电气(EE) 架构面临很大的挑战,从而迫使整车的电子电气架构不断地演进,从传统的分布式向集中式转变,从面向信号的软件架构向面向服务的软件架构转变,从控制局域网络(CAN)、局域互联网络(LIN) 总线向车载以太网通信架构转变。介绍了汽车电子电气架构的现状以及面临的挑战,概述了汽车电子电气架构的演进路线及具体方案技术,结合电子电气架构的演进趋势,对电子电气架构未来的发展方向提出展望。

高强汽车钢温冲压成形工艺探讨

摘要:热冲压成形汽车零部件的室温组织为全马氏体组织,虽然强度高,但延展性差。为此,提出了一种采用热轧后直接淬火获得马氏体组织,随后在冲压工序进行回火以提高冲压件延展性的温冲压成形工艺。采用热轧实验机和MMS-200热力模拟实验机模拟温冲压成形过程,并对实验钢力学性能和组织结构进行了分析。结果表明:随温冲压成形温度的升高及保温时间的延长,实验钢成形后抗拉强度和维氏硬度值不断下降,伸长率呈先上升后下降再上升的趋势。随成形温度的增加,实验钢组织由马氏体不断转变为回火马氏体、回火屈氏体和回火索氏体。在350℃保温120~180s,实验钢成形后力学性能最佳,抗拉强度超过1500MPa,伸长率大于8%,硬度值在425HV~440HV之间。冲压成形温度越高,对冲压设备所需求的力能参数越低。