软材料大变形断裂的相场建模与应用

摘要:软材料具有承受大应变和高可恢复性的独特特性,使其在生命科学和软机器人等前沿领域具有不可替代的作用. 了解此类材料的复杂断裂行为不仅具有迫切的应用需求,也是材料科学、物理学和连续介质力学等基础学科的研究重点. 本文介绍了作者在断裂相场模型方面所做的一些工作,主要关注软材料的大变形断裂相场建模、算法实施以及应用. 在有限变形理论框架下,作者发展一种新的混合多场断裂相场模型,用于模拟近不可压缩软材料的大变形断裂. 从物理裂纹拓扑的角度清楚阐述了不可压缩性与扩散裂纹张开之间的内在矛盾. 为了解决这个问题,该模型利用相场退化函数放松了损伤材料的不可压缩性约束,而不影响完好材料的不可压缩性. 通过修改经典的摄动拉格朗日乘子方法,导出了用于近不可压缩大变形断裂问题的新型多场混合变分格式. 虽然该混合格式切实有效,但通常需要采用满足inf-sup 条件的混合有限元(FE)配置,这进一步加剧了本已昂贵的相场断裂建模的计算负担. 为了能够使用具有数值优势的低阶线性单元,作者采用压力投影技术开发了一种稳定的混合公式. 该公式的优点在于其简单性和多功能性,允许对所有场变量采用低阶单元离散. 考虑到这一特性,作者进一步设计了一种高效的自适应网格划分策略,从而大幅提高了计算效率. 为了更好地应对涉及裂纹成核的自适应场景,提出了一种新的基于能量的网格细化判据. 此外,本文也完整阐述了稳定混合有限元公式的数值处理,以及自适应网格细化,删除技术的核心操作. 所提出的格式的准确性、效率和稳健性已经通过一系列具有代表性的数值案例得到了充分的验证.

冷喷涂沉积层中的孔隙及其控制措施

摘要:冷喷涂沉积层中的孔隙率反映了喷涂颗粒的变形程度及它们之间的结合程度,对沉积层的硬度、弹性模量、摩擦磨损性能、耐腐蚀性能和疲劳性能等均有一定影响。沉积层孔隙率对评价沉积层综合性能、优化冷喷涂工艺等均有着重要的意义,是衡量沉积层质量的重要指标之一。目前已有多篇文章系统介绍了冷喷涂工艺对沉积层性能的影响,但鲜有关于冷喷涂沉积层中孔隙及其控制措施的综述性报道。为此,在参阅了大量文献的基础上,系统阐述了冷喷涂沉积层中孔隙的形成及其检测方法和影响因素,并总结了孔隙率对沉积层性能的影响及降低沉积层孔隙率的措施。

功能玻璃关键材料体系发展战略研究

摘要:功能玻璃材料是无机非金属材料的重要组成,主要包括电子信息玻璃、新能源玻璃、特种玻璃等,是信息显示、半导体、新能源、深海、深空等战略性新兴产业的基础性支撑性材料,已成为我国建设智能社会、低碳社会的重要基石。我国近年来在功能玻璃领域取得一系列重大成就,但仍存在关键材料短板环节突出、跟踪研发、创新资源分散、体系化发展不足等问题。本文按照主干化、体系化研究思路,围绕电子信息玻璃、新能源玻璃、特种玻璃等关键材料的技术、产业、支撑等体系化发展要素,梳理了国外功能玻璃领域先进国家的发展现状,结合我国的发展现状,凝炼了我国功能玻璃关键材料发展面临的主要问题,提出了我国功能玻璃关键材料的发展思路与近期、中期、远期的发展目标,凝练了我国功能玻璃关键材料领域的重点技术发展方向。研究建议:增强关键原材料保障能力,为产业安全发展提供有力支撑;加速启动功能玻璃关键材料创新滚动规划;强化功能玻璃关键材料政策支撑;完善功能玻璃关键材料的绿色低碳与数字化发展。

钙钛矿太阳能电池中吸收层的研究进展

摘要:钙钛矿太阳能电池因具有成本低、制备容易和光电性能优异等突出特点受到了广泛关注. 钙钛矿太阳能电池能量转化效率已从2009 年的3.8%提升到2019 年的25.2%. 我们在文中重点总结了钙钛矿电池吸收层的制备工艺,掺杂和晶体组成、结构调控方面取得的重要进展,以及这些突破对电池效率提高的贡献,同时也提出了钙钛矿太阳能电池发展仍需要解决的问题。

柔性液态金属材料的硬核科技——从应用基础研究到颠覆性技术突破

摘要: 液态金属及其衍生材料是近年来异军突起的新兴功能物质,一系列突破性发现已经催生出诸多全新的材料创制与应用,被视为人类利用金属的第二次革命。中国科学院理化技术研究所团队通过对液态金属物质材料属性及独特的物理化学行为的系统研究,创建了全新的科学理论,并在液态金属热管理技术、先进制造、生命健康以及柔性机器等重大领域取得了颠覆性技术突破。室温液态金属散热首项专利、液态金属增材制造首项装备、液态金属生物医学首项应用、液态金属柔性机器首篇论文等,均出自理化技术研究所,可以说液态金属物质科学与技术应用都是由中国定义的。本文通过对该项研究工作进行系统梳理,旨在探究基础研究激发颠覆性创新的机制,以期能为我国相关科技政策的制定提供借鉴。

异质金属激光增材制造研究及应用进展

摘要:极端服役环境对空天等核心构件可靠性和集成性提出了严峻挑战。传统单一材料体系和制造工艺难以满足复杂性能需求。激光增材制造技术是实现异质金属结构-功能一体化的有效途径,但异质材料兼容问题(易诱发缺陷、加工参数响应不一等)限制了高质量异质界面的形成,这对于制造装备与连接工艺提出了更高挑战。本文基于异质金属激光增材制造的最新研究进展,聚焦异质金属成型的关键问题及解决方案,回顾了近年来异质金属体系的发展及空天领域应用,从送粉方式、复合制造等方面介绍了激光增材装备的改进策略,总结了近年来激光增材技术在连接方式、参数调控、监测预测和前后端处理方面的研究进展,并针对这一技术的共性及难点问题给出了展望与思考。

等离子物理气相沉积高熵合金涂层及组织性能

摘要:采用等离子物理气相沉积的方法在316L不锈钢表面制备了AlCoCrFeNi 高熵合金涂层,研究了喷涂距离和电流对高熵合金涂层物相组成、表面形貌、截面形貌、硬度、结合强度和耐磨性的影响。结果表明,不同喷涂距离和电流下,高熵合金涂层都主要由BCC、B2 和FCC相组成;随着电流或者喷涂距离增加,涂层中BCC平均晶粒尺寸先增后减。当喷涂距离为460 mm时,随着电流从1600 A增加至2000A,涂层平均摩擦系数逐渐增大,表面和截面硬度先减后增,涂层结合力和结合强度先增大后减小,涂层的磨损率先增加后减小;当电流为1800 A时,随着喷涂距离从420mm增加至500mm,涂层平均摩擦系数逐渐减小,表面硬度先减后增,截面硬度先增后减,涂层结合力和结合强度逐渐增大,涂层的磨损率逐渐减小。高熵合金涂层的磨损率与涂层表面硬度和内聚强度都有一定相关性。

液态金属的多功能化

摘要:液态金属是在室温或常温下处于液态的金属,又被称为低熔点金属。由于具有优越的导热、导电、润滑等性能,液态金属被应用在散热器、电池、3D打印、柔性机器人、磁流体发电、电磁屏蔽和生物医疗等领域,有着广阔的应用前景。各种新型多样的研究不断涌现。液态金属基塑料、合金等复合材料的问世也进一步推动了液态金属的发展。但是,液态金属的应用发展也面临瓶颈问题:腐蚀其他金属、密度大、质量大、原料储备种类数量过少等。本文综述了液态金属的多功能化的研究进展,并对液态金属的研究方向及应用前景进行了展望。

多维异质异构大型构件智能增材制造研究进展

摘要:电弧增材是近年发展起来的一种高效率、低成本、高性能、低精度整体制造方法,可成形超高强钢、轻合金等多种金属构成的一体化高性能构件.电弧-激光复合、增材-形变、增材-减材等复合成形技术,可进一步提高成形精度, 提升构件韧性,更好地成形异质异构构件.本文从多维异质异构概念内涵、电弧复合增材技术、电弧增材过程智能控制等方面对多维异质异构大型构件智能电弧增材技术进行了综述, 重点分析了增材过程参数-熔池视觉-应力-变形等协同传感技术; 利用深度学习等人工智能方法,在线调整工艺参数, 控制缺陷、抑制应力、减小变形, 研制的大型多维异质构件多机器人智能复合增材装备,最大可增材10m ×4m×4m多金属构件; 分析了电弧增材构件微观组织演变、静(动)态力学性能和抗超高速冲击性能特征; 最后, 指出了多维异质异构增材技术的4大发展趋势.

亚/超临界水环境下表面涂层对合金腐蚀防控的研究进展

摘要:[目的]亚/超临界水氧化技术是处理固废和难降解废水的有效方法之一,但苛刻的反应条件导致的设备腐蚀问题限制了这项技术的发展。如何提高亚/超临界水环境下的合金耐蚀性成为研究重点和难点,而涂层技术是延缓金属腐蚀的有效手段。[方法]对亚/超临界水环境下传统合金涂层、陶瓷涂层、复合涂层和高熵合金涂层的耐腐蚀机理及涂层失效机理进行归纳。[结果]传统合金涂层、陶瓷涂层和复合涂层主要通过形成致密连续的氧化物层来隔绝腐蚀介质与基体元素反应。高熵合金涂层则通过形成尖晶石结构和氧化层来提高材料的耐腐蚀能力。[结论]亚/超临界水环境下防腐涂层的主要失效原因为氧化物层的完整性被破坏,同时不同类型涂层也存在不同的失效过程。最后对未来亚/超临界水涂层防腐蚀的发展方向进行展望。